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Chapitre 1

En guise d’Introduction

1. Position du probleme

L’analyse des comportements individuels ne repose pas toujours sur des variables continues
comme le revenu, la consommation, l'investissement...; elle peut aussi porter sur des
phénomeénes a caractere qualitatif comme, par exemple, le fait de consommer un certain bien,
le fait d’adhérer a une union syndicale ou a une association, le moyen de transport utilisé, le fait
de choisir une filiere de formation parmi un ensemble, le fait d'exercer une certaine activité
professionnelle. Dans ces cas, la variable explicative Y ne peut prendre qu’un nombre limité de
modalités. Il a été démontré que dans un tel cadre, I’économétrie classique (notamment la
méthode des MCO) produit des résultats biaisés et non-convergents. En lieu et place de
I’application des méthodes de I’économétrie classique, plusieurs modeles ont été développés
selon la nature de la variable ou du phénoméne a analyser. C’est a cette fin que répond
I’économétrie des variables qualitatives et des variables a domaine de définition limitée. Dans
toute la suite, nous utiliserons 1’appellation anglaise CLDV (Categorial and Limited Dependent
Variable) pour désigner 1’économétrie des variables qualitatives et des variables a domaine de
définition limitée.

Il existe quatre grands groupes de modeles définis selon la nature des variables a analyser qui
rentrent dans la cadre des CLDV : les modeles binaires ou dichotomiques, les modéles
multinomiaux, les modeles de comptage, les modeles censurés ou tronques.

Les modeles binaires ou dichotomiques sont élaborés pour les cas ou la variable dépendante a
analyser Y est susceptible de prendre deux valeurs (0 ou 1), permettant ainsi de rendre compte
de I’occurrence ou non d’un événement.

Les modeles multinomiaux sont une généralisation des modéles dichotomiques aux cas ou la
variable dépendante a analyser Y est susceptible de prendre plus de deux valeurs. C’est le cas
par exemple, du statut matrimonial, des avis donnés lors d’une enquéte de satisfaction sur une
échelle de plus de deux modalités (1=trés satisfait, 2=satisfait, 3=pas satisfait, 4=pas du tout
satisfait). Il existe une gamme de modeles multinomiaux selon que la variable est ordonnée,
non ordonnée ou séquentielle.

Les modeles de comptage, quant a eux, sont elaborés pour la modélisation des variables prenant
un nombre trés limité de modalités positives et traduisant le plus souvent un phénomeéne de
comptage. Par exemple, le nombre d’appel entre 12 heures et 13 heures a un poste de police, le
nombre passagers a une gare de bus entre 12 heures et 14 heures.

Les modéles censurés et tronqués sont adaptés au cas de variables d’intérét « coincés » entre
deux valeurs ou présentant soit une contrainte de supériorité soit une contrainte d’infériorité.

Dans chacun des modeéles ci-dessus énuméres, on veut expliquer les réalisations du phenomene
observé. A cet effet, on entend croiser les réalisations de la variable Y avec celles d’un certain
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nombre de variables explicatives Xu,...,Xk dont les réalisations peuvent étre indifféremment de
natures qualitative ou quantitative.

Les modeles a variables qualitatives sont de plus en plus utilises parmi I'éventail des outils
d'inférence statistique. Leurs applications se révelent fort diverses, des études épidémiologiques
aux etudes de marché du travail et d'allocation du temps, en passant par le marché du crédit.
Dans les modeles a variable dépendante limitée, la méthode traditionnelle des Moindres Carres
Ordinaires ne semble plus adaptée car elle doit tenir compte de 1’absence de continuité de la
variable endogéne et souvent de 1’absence d’un ordre naturel entre les modalités de cette
variable.

2. Pourquoi les MCO ne sont-ils pas appropriés?

Pour illustrer le fait que les variables catégorielles « violent » les hypothéses des MCO et ne
peuvent pas se préter a cette méthodologie; nous allons utiliser le modele binaire ou
dichotomique. On considere une variable dichotomique y a deux modalités O et 1, et x un vecteur
de k+1 variables explicatives. On cherche a expliquer la réalisation de I'évenement y=1 par les

variables de x. X est le vecteur (1, k+1) des caractéristiques de I'individu i. Le modéle linéaire
classique s’écrit :
yi=X;a+e 1)

Plusieurs éléments rendent inappropriée 1’estimation de ce mode¢le par la méthode des MCO :

1) Les deux membres du modéle sont de nature différente : y, est qualitative et X', a+e,est
quantitative continue.

2) Une représentation graphique des points montre que 1’approximation linéaire n’est pas
adaptée.

0,8

0,6

0,4

0,2

Le nuage de points se trouve sur deux droites paralléles. On voit mal comment on peut faire
passer une seule droite d’ajustement par ces points.

3) Les erreurs du modeéle prennent deux valeurs :
- g =1-x",a quand y, =1avec une probabilité Pr(y, =1) = x’, a.
- ¢ =X, a quand y; =0 avec une probabilité Pr(y, =0)=1-x', a.
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Par conséquent, les erreurs ne peuvent étre continues, a fortiori suivent une loi de distribution
normale. Le non-respect de I’hypothése de normalité ne permet pas d’utiliser les statistiques
usuelles de test (Student, Fisher, Chi-deux).

4) La variable dépendante y; suit une loi binomiale de paramétre X', a . Le terme d’erreur €, est

aussi une binomiale et Var(e) = x"; a(1—x’; a) : les erreurs sont hétéroscédastiques par

construction et les estimateurs par MCO ne sont pas efficaces. La variance dépend des
variables explicatives. Cependant, cet inconvénient est mineur puisqu’on peut utiliser les
moindres carrés pondérés pour résoudre ce probleme économétrique. Apres avoir estimé le

modéle par MCO, on tire 7 =¥, (1-Y,) comme estimateur de Var(e,) = o’ . Ensuite, on
applique les moindres carrés pondérés, c'est-a-dire les MCO au modeéle linéaire obtenu en
divisant les observations par &; .

5) On a par naturey,; {0;1}. Or, rien n’impose que les prédictions Y, appartiennent a
’intervalle [0 1]. Méme si on estime sous les contraintes 0 < x.a <1, rien ne garantit que
ces contraintes soient compatibles entre elles. Le risque d’avoir des probabilités calculées
négatives est présent. 1l se peut ainsi que a“iz soit négative!

3. Principe d’estimation des CLDV

La méthode d'estimation de choix des CLDV est la Méthode du Maximum de Vraisemblance.
Avant toute chose, il convient de bien identifier la fonction de répartition de Y ou sa fonction
de densité. Cependant, compte tenu de la nature qualitative des variables, on a recours a des
hypotheéses sur la distribution des erreurs en utilisant une approche par les variables latentes.
Soit f la fonction de densité retenue. Considérons un échantillon de taille n. On construit la
fonction de vraisemblance comme suit :

L(B) = IIi=1 f (il X0) (2)
ou B est le vecteur des parametres a estimer.

La détermination des parametres £ se fait par la maximation du logarithme de la vraisemblance,
c'est-a-dire la résolution du programme :

ng log (L(B)) 3)

Pour résoudre cette équation, on utilise les algorithmes du calcul numérique. A cet effet,
plusieurs algorithmes basés sur le principe itératif sont disponibles. Le principe est le suivant :

- On part d’une valeur f3, ;

- On détermine B, tel que B; = By + €0, & €St un incrément ;

- On vérifie si ||Byy — B'|| < € pour & aussi petit que I’on veut ;

- Sic’est le cas, on s’arréte et I’estimateur est f3; ;

- Sinon, on continue le processus jusqu’a avoir ||BMV - B’” < g pour ¢ petit ;

Toute la différence au niveau des méthodes de résolution différent au niveau du choix de ¢,.
Quatre algorithmes sont le plus souvent utilises :

4



La méthode Steepest Ascent :

L(Bm) 5 5
Em = a8 s Bm+1 = Bm + &m (4)

La méthode de Newton-Raphson :

1

_ [0 IL(Bm) _ 5
La méthode de Scoring :
IO IwBm) 5  _ p

La méthode de Bernd-Hall-Hall-Hausman (BHHH) :

b = [0 (2 % (2 s = B+ @

4. Démarche générale d’analyse des modeles CLDV

De fagon pratique, pour s’assurer que le maximum de vraisemblance fonctionne, il faut :

10 observations au moins par parameétre estimé sans toutefois oublier qu’il est conseillé
d’atteindre au moins un échantillon de taille 100 ;

Eviter la multicolinéarité entre les variables explicatives : on doit avoir une
indépendance linéaire des colonnes de X ;

Avoir a I’esprit le principe « GIGO » : Garbage In, Garbage Out

Des modéles comme Poisson, Binomial Neégatif, ZIP (Zero Inflated Poisson), ZINB
(Zero Inflated Binomial) sont gourmands en observations.

L’analyse des modéles CLDV procéde suivant les étapes ci-apres:

1.
2.

3.

4.

Estimer le mode¢le a I’aide du MV.

Test d’hypothése a 1’aide des tests tels que Wald, rapport de vraisemblance,
multiplicateur de Lagrange, etc.

Mesurer 1I’adéquation du modéele aux données a 1’aide des criteres d’information (AIC,
BIC, Schwartz) et de certains tests tel que celui de Hosmer et Lemeshow.
Interprétation du modele a I’aide des probabilités prédites, des odds ratios, etc.

Le schéma_suivant donne ine démarche aénérale A siivre lors d’une réoressian logistique.
Cette démarche peut étre appliquée a toute autre type de régression.

[ ESTII\ETION ]4 ‘

P | owenosTic | EXPLICATIONS
-RESDUS DE o




Chapitre 2

Modeles dichotomiques Probit et Logit

1. Introduction

Ce chapitre présente les modéles destinés a I’analyse des phénoménes binaires. Dans ces
modeles, la variable dépendante Y prend deux valeurs (0 ou 1) indiquant 1I’occurrence ou non
d’un événement. On parle ainsi des modeles dichotomiques ou binaires. On veut expliquer
pourquoi cet événement se produit (ou, au contraire, ne se produit pas). A cet effet, on entend
croiser les réalisations de la variable binaire Y avec celles d’un certain nombre de variables
explicatives X1, Xo..., Xk dont les réalisations peuvent étre indifféeremment de natures
qualitative ou quantitative.

Le chapitre introductif a montré que pour ce type de variables, la méthode traditionnelle des
Moindres Carrées Ordinaires n’est pas adaptée car elle doit tenir compte de I’absence de
continuité de la variable dépendante et souvent de I’absence d’un ordre naturel dans les
modalités de cette variable. Afin de pallier cette limite, en général, on a recours a deux types de
modeles selon I’hypothése faite sur la distribution des termes d’erreurs : le modéle Logit et le
modele Probit.

Ce chapitre présente les intuitions et les développements théoriques permettant de formaliser et
mieux interpréter les modeles dichotomiques. Un apergu des domaines d’application de ces
modeles est également présente.

2. Quelques domaines d*application

Il existe de nombreux domaines d'application des modéles dichotomiques. Ces modeles peuvent
étre utilisés a titre explicatif, pour rechercher les déterminants d'un phénomeéne donné, ou a titre
prévisionnel, pour prédire un phénomene pour des cas nouveaux. Voici quelques domaines
d'application intéressants de ces modéles.

a) Anthropométrie

On dispose de donnees anthropométriques relatives a un échantillon de crénes d’hommes et de
cranes de femmes. On cherche a savoir quels sont les déterminants des cranes d'hommes et a
déterminer le sexe (inconnu) d’un individu dont on a retrouvé le crane lors de fouilles
archeologiques. On s'intéresse donc a la probabilité que le crane soit du sexe masculin.

b) Médecine

On dispose de mesures cliniques, biologiques... caractérisant des malades atteints de la méme
maladie. Aprés avoir observé 1’évolution de ces patients sur une période, on cherche les
déterminants qui expliqueraient la survie des malades. On peut ainsi prévoir le diagnostic final
pour un nouveau malade atteint de la méme maladie au vu de ses caractéristiques biologiques.



¢) Finance et banque

Les banques sont intéressees a prévoir le comportement des demandeurs de crédits, en fonction
de leurs caractéristiques qui doivent discriminer entre les « bons clients » et les « mauvais
clients». A partir d'une regression logistique, on chercher a savoir quelles sont les
caractéristiques des clients qui expliquent leur comportement face au crédit (bon client/mauvais
client). Des méthodes en analyse discriminante permettent également de résoudre ce genre de
probléme (Crédit Scoring).

3. Notion de variable latente et modélisation des variables dichotomiques

Pour pallier les insuffisances de la spécification linéaire, une approche classique consiste a
considérer la variable endogéne y comme étant la manifestation d’une variable « cachée » y*
inobservable ; cette derniére étant reliée a un ensemble de variables explicatives X. Nous allons
illustrer cette approche en considérons trois exemples.

Le premier exemple et le plus célébre est tiré de la biologie, celui de I’insecticide : on diffuse
dans un espace clos un insecticide et I’on cherche a déterminer la dose minimale permettant de
tuer les insectes. Pour cela, on observe au terme d’une période fixé les insectes morts pour
lesquels on adopte le code y, =0 et ceux encore vivants codés y, =1. On suppose alors que

chaque insecte dispose d’une capacité de résistance propre qui se traduit par un seuil
inobservable de produit, noté y; , telle que si la dose de produit » est supérieure a ce seuil
I’insecte meurt (y, =0), il reste vivant (mais malade peut étre) pour une dose y inférieure (
y, =1). On cherche alors a modéliser la probabilité de survie de I’insecte ien fonction de la
dose d’insecticide et des observations faites sury,. Le probleme peut s’écrire de la fagon
suivante :

(2.1)

1 osioyi>y
0 si y <y

La tolérance y; peut s’écrire comme la somme d’une combinaison linéaire de caractéristiques
propres a chaque insecte et d’un terme d’erreur.

y, =x,a+e, (2.2)
Un autre exemple, toujours tiré de la biologie, concerne la probabilité pour un mineur i de ne
pas contracter une maladie des poumons (événement codéy, =1). Le mineur contracte la

maladie (y, =0) lorsque sa tolérance inobservable, notée y; , aux conditions de travail et en
particulier aux poussieres de charbon, est inférieure a certain seuil y inconnu. On suppose que
la tolérance est liée a 1’age du mineur noté X;. De la méme fagon que précédemment, ce
probléme peut s’écrire sous la forme :

= (2.3)

1 si yr:ﬁ0+ﬁlxi+ei>'7
0 sinon



Le troisieme exemple s'intéresse a la consommation d'un certain bien C (par exemple un poste
radio avec lecteur CD). On définit la variable y, =1 si I’individu i a acheté le bien C, y, =0

sinon. La variable « y= acheter le bien C» est celle qui est observée ; mais en réalité elle est le
résultat d’un arbitrage en terme d’utilité. Si U (X;,1) représente 1'utilité que procure l'achat du

bien C a I’individu i de caractéristiques x; et U(x;,0) I'utilité liée & la non consommation du
bien, on peut poser quey, =1<U(x,1)>U(x;,0)+c. La variable inobservée
y. =U(x,,))-U(x,0) est la variable latente qui sous-tend I'achat du bien C. On a:

(2.4)

1 si y =x,a+e>c
0 si y <c

Dans cet exemple, nous avons assimilé la variable latente y; a une différence d’utilité. Mais

cette variable inobservable peut représenter n’importe quelle grandeur économique susceptible
d’affecter le comportement d’achat du bien C.

Tout modéle dichotomique peut s’écrire sous la forme suivante :

:{1 iy >e 25)
0 si y, <c

i
ol la variable latente y; inobservable est liée a un ensemble de caractéristiques observables x,
et a une perturbation e, :
y, =X, a+e (2.6)

Les erreurs sont supposées i.i.d (0, 02).

Si les y; étaient observables, on pouvait estimer directement le modéle (2.6) a I’aide des MCO,

mais malheureusement ce n’est pas le cas. On peut cependant estimer la probabilité de
réalisation de I’événement (y, =1):

Pr(y, =1) =Pr(y; >c)=Pr(e, >c—x',a) =1- Pr(e, <c—x",a)=1-F(c—-x,a) (2.7)

ou F est lafonction de répartition des erreurs. On fait I’hypothése que la distribution des erreurs
est symétrique autour de samoyenne : f (x) = f (—x) et F(x) =1- F(—x) . Dans ces conditions,

ona:
Pr(y, =1/x) = F(x,a-c) (2.8)

Remarque : La variable latente y 'n’a pas toujours une interprétation économique claire, elle
n’est qu’un artefact destiné a modéliser la réalisation de la variable observée.



4. Estimation du modele

L’estimation du mode¢le dichotomique se fait généralement par la méthode du maximum de
vraisemblance. Pour cela, on écrit la vraisemblance de 1’échantillon. Lorsque les observations
individuelles y,, i=1,...,n, sont indépendantes, cette vraisemblance s’écrit comme le produit des

probabilités. La méthode du maximum de vraisemblance consiste alors a trouver les valeurs des
parameétres qui rendent ’observation des données la plus vraisemblable, c’est-a-dire a
maximiser la fonction de vraisemblance. Il s’agit en fait de chercher a faire dire au modeéle la
méme chose que la nature.

Si les observations sont indépendantes et identiquement distribuées, la probabilité jointe est le
produit des probabilités associées a chaque observation :

n Yi
L(y,xa) =[J(F(x,2) @L-F(x;a))” (2.9)
i=1
Cette fonction de vraisemblance peut aussi s’écrire :

L(y,x.a) = [ [(F(5%2)) (2.10)
i=1
avec
5, =1siy, =1
0,=-1siy, =0

Les conditions de premier ordre de la maximisation de la fonction de log-vraisemblance
s’écrivent:

1 ! -
S(a) = _a Z{F(x ~ —yi)m}c(xia)xi—

: y; —F(x;a) ' v
;{F(xz a)(1-F(x, a»}f(x‘ axi=0

Pour résoudre cette équation, il faut expliciter la forme fonctionnelle de F. En pratique, deux
lois de distribution sont utilisées: la loi logistique et la loi normale.

(2.11)

4.1 Le modeéle Logit

On pose ici I’hypothése que les erreurs ont une distribution logistique. La fonction de répartition
s’écrit :

e* 1
F(x) = s 1+e‘X=A(X) (2.12)

Le modele Logit impose la variance des erreurs égale az* /3. La fonction de log-vraisemblance

n n
prend la forme I=a‘2x'i yi—ZIn(1+eX'ia) et les conditions de premier ordre donnent:
i=1 i=1



=1

S(a) = Z[ e }x'izo (2.13)

4.2 Le modeéle Probit

Dans le cas du modéle Probit, la fonction de répartition F est celle de la loi normale centrée
réduite :

X -1

1 -
F(X)= | ——e?2t’dt=d(x 2.14
(x) j N (%) (2.14)
Les conditions de premier ordre s'écrivent:
1 4 y. — @,
S(a —— X, = ———— X' =0 2.15

Le systeme d’équations défini par les conditions du premier ordre est non-linéaire. On est
contraint de rechercher une solution numérique (et non pas analytique) pour ce probléeme. Pour
cela, on devra utiliser un algorithme d’optimisation numérique de la fonction de vraisemblance
(voir Gouriéroux,(1989) page 20 pour les algorithmes de résolution).

Remarques 1 : Problémes d’identification

L’estimation des mod¢les Logit / Probit pose deux problémes :

« leseuil ¢ qui détermine la modalité O ou 1 ne peut étre estimé indépendamment
de la constante ;

« la variance o de l’erreur e ne peut étre estimée indépendamment des
coefficients.

Pb n°1: Le seuil ne peut étre identifié

Pr(y, =1) =Pr(y; >c)=Pr(e, >c—x;a)=Pr(e, > (c—a,) —iajxij) (2.16)

La constante a, et le seuil cne peuvent étre dissociés — par la suite on fera « comme si » ¢ =
0.

Pb n° 2 : La variance de ’erreur ne peut étre identifiée

Pr(y, =1/x;) =Pr(e, >—x a) = Pr[e—‘ > x| ij = @(x‘i i) (2.17)

(o2 (o
— Il est impossible de dissocier o de a. Les estimateurs des coefficients ne sont donc

identifiés qu’a une constante multiplicative prés (1/c). On peut faire «<comme si»
o=1.
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Remargue 2: Lorsqu’on est en présence de mesures répétées ou que les données présentent
une « structure hiérarchique », comme c’est le cas lorsqu’on échantillonne des ménages et que
I’on s’intéresse aux caractéristiques des membres de ces ménages, 1’hypothése d’indépendance
des données n’est pas plausible. Dans ce cas, il faut utiliser d’autres méthodes qui prennent en
compte la corrélation des données (ex : modele marginal, modele logistique conditionnel,
modele mixte). Les situations de mesures répétées sont plus fréquentes en biologie (expériences
répétées) qu’en économie.

5. Propriétés des estimateurs Logit et Probit

Les estimateurs Logit et Probit obtenus par la méthode du maximum de vraisemblance
possedent les propriétés asymptotiques suivantes.

A

a. L’estimateur & converge en probabilité vers la vraie valeura. Cela signifie que plus la
taille de 1'échantillon est grande, plus 1’estimation tend vers la vraie valeur.

plima=a (2.18)
b. 1l est asymptotiqguement normalement distribué:

a—>N(a @™ (2.19)

d%log L
ou I(a)= —{E( aaai' ﬂ est la matrice d'information de Fisher. On montre que :

ol fwa
(a)= Z{ F(X, a)A—F(x, ) }X‘ % (2:20)

c. L’estimateur @ est asymptotiquement efficace: en grands échantillons, I'estimateur du
maximum de vraisemblance utilise de facon optimale I'information contenue dans les
données.

6. Qualité d’ajustement du modele

Dans les modeles qualitatifs, plusieurs statistiques peuvent étre utilisées pour juger de la qualité

de ’ajustement. Les plus courantes sont le test du rapport de vraisemblance et le pseudo R*de
Mc-Fadden.

6.1 Le test du rapport de vraisemblance (LR-test)

Le test du rapport de vraisemblance consiste a comparer deux modeles, a savoir le modéle
estimé avec la constante seule et le modele estimé avec toutes les variables explicatives (qu’on
appelle modéle saturé). C’est donc I’analogue du test de Fisher dans le cas des modeles estimés
par maximum de vraisemblance. L hypothése nulle de ce test s’écrit :

Hy:a,=a,=..=a,=0 (2.21)
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Puisque le modéle sous Ho est emboité dans le modele saturé, la vraisemblance est augmente
au fur et a mesure qu’on ajoute de nouvelles variables: un modele explique mieux la réalité
avec davantage de variables explicatives. La vraisemblance du modele saturé est donc
supérieure a celle du modéle contraint. Suivant la vraisemblance, on aura tendance a choisir le
mode¢le contraint. Mais s’il se trouve que l’écart entre les deux vraisemblances est non
significatif, alors on choisira le modéle contraint, car il explique aussi bien la réalité que le
modele saturé avec moins de variables. On le retient si on préfere les modéles parcimonieux.

Le test du rapport de vraisemblance est donc basé sur 1’écart entre les log-vraisemblances des
deux modeles. La statistique du test est défini par :

LR=—2{lo—!) (2.22)

ou lo est la log-vraisemblance du modéle estimé avec la constante seule comme variable
explicative, ¢’est-a-dire sous I’hypothése nulle ; | est la log-vraisemblance du modéle saturé.

Sous Ho,0na:
LR—=— y*(k) (2.23)

On rappelle quek est le nombre de variables explicatives véritables sans la constante. Pour un
niveau de confiance donné, on lit la valeur critique associée a la loi du khi-deux a k degrés de

liberté 2. Si LR < x> alors on accepte I'nypothése Ho, c'est-a-dire les variables explicatives

du modele n'apportent pas grande chose dans I'explication du phénomeéne. Dans le cas contraire,
on conclut que les variables sont globalement significatives, c'est-a-dire qu'il existe au moins
une qui apporte une information significative dans l'interprétation du modeéle.

6.2 Les pseudo- R’

Plusieurs auteurs ont proposé des pseudo- R*pour les modeles qualitatifs pour juger la qualité
de I’ajustement du modele aux données, avec I’idée d’en faire des équivalents du coefficient de
détermination R>du modele linéaire classique. On les appelle des pseudo-R?, car ils ne
s’interprétent pas en termes de rapport de variances, comme dans le cas du modele linéaire.
Néanmoins, ils permettent d’évaluer le pouvoir prédictif du modele. Une valeur proche de 1
indique que le pouvoir prédictif du modele est acceptable.

a) Le R* de Mc-Fadden

On le définit par :
Ry —1-oot (2.24)
LoglL,

Comme L > L, (la vraisemblance d’un mode¢le libre est toujours supérieure a celle du modele

contraint), alors RZ_ €[01].

Remarque : Sous EViews, le R*de Mc-Fadden n’est pas calculé lorsque le modéle est spécifié
sans constante.
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b) Le R? de Cragg et Uhler

On le définit par :
Rz _ Ll/n _ Lg/n
Ccu (1_ L(Z)/n)Lzln
c) Le R? d’Efron

I est definit par :

n

Dy -9)°

Ré —1- i=1

n

Z(yi - 7)2

i=1
avec ¥, =F(x;a).

d) Le R? de Count

Ce coefficient est définit par :

1
2
RCount = EZ r]jj

j
ol n i le nombre d’individus biens classés.

e) Le R? de Count ajusté

On le définit par :

anj —max(n1+,n2+)
2 i

n- maX( N, rl2+)

ou n;, estle nombre d’individus possédant la modalité j dans la base de départ.

6.2 Test d adéquation de Hosmer Lemeshow

(2.25)

(2.26)

(2.27)

(2.28)

Le test de Hosmer et Lemeshow teste 1’adéquation des probabilités calculées aux probabilités
théoriques (inobservables) de 1’événementy =1. Il est basé sur un regroupement des

probabilités prédites par le modéle en J groupes, déciles par exemple. On calcule, ensuite, pour
chacun des groupes le nombre observé de réponses positives y = 1 et négatives y = 0, que 1’on
compare au nombre espéré prédit par le modele. On calcule alors une distance entre les effectifs
observés et les effectifs « espérés » au moyen d’une statistique du Chi-deux. Lorsque cette

distance est petite on considére que le modéle est bien calibré

Soit n? le nombre d’individus qui présentent effectivement la valeur y =1 dans la classe j .

Pour chaque classe j on calcule la probabilité moyenne de y =1, par :
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1l
P; :_Z Pij (2.29)

n; s

Si les probabilités sont correctement évaluées, la statistique de Hosmer et Lemeshow est définie
par:

HL = iw ) (2.30)

On doit noter que n; P, est ’espérance calculée du nombre d’individus présentant la modalité

y =1 dans laclasse jetque n;p;(1- p;)est la variance calculée de nﬁ .

6.3 Indicateurs de « prédictions » correctes, spécificité et sensibilité

On peut également juger de la qualité du modele en évaluant son aptitude a reproduire les
valeurs effectivement observées de Y sur 1’échantillon qui a servi a 1’estimation des

coefficients. Pour cela, on doit convenir d’un seuil au-dela duquel la valeur calculée de y; se
concrétiserait par une valeur predite de y;, égale a 1. On peut, par exemple, convenir d’un seuil
égal a 50 % (quoique ce seuil soit totalement arbitraire) et retenir la régle suivante :

y. =1si F(x',4)>05 (2.31)
Le choix d’un seuil égal a 0,5 a ses désavantages. En particulier, il attribuera le méme résultat
a deux individus ayant I’un une probabilité estimée de 0,45 et I’autre une probabilité¢ de 0,001.
Dans certains cas, on peut étre amené a réviser ce seuil en fonction de I’évenement étudié (cas

d'échantillons déséquilibrés ou des phénomenes rares par exemple).

On peut construire une matrice de confusion indiquant les réalisations et les prédictions.

Prédiction (y)
Réalisation (y) 1 0 Total
1 r]11 r-]10 nl.
0 nOl nOO n0.
Total n, n, n

On définit ainsi le taux de prédictions correctes global (TPC) et le taux de prédictions correctes
de chacun des événements (TPC(1), TPC(0)) .
nll + n00

TPC = M 4100 (2.32)
TPC(1) = % x100 (2.33)
1.
TPC(0) = " x100 (2.34)
n

0.
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En général, le taux global de prédictions correctes offre une mesure optimiste de la qualité
prédictive du modele. La sensibilité est définie comme la probabilité de bien classer un individu
de la catégorie y = 1, c’est-a-dire la probabilité de classer 1’individu dans la catégorie y = 1
étant donné qu’il est effectivement observé dans celle-Ci :

Sensibilité =Pr(y=1/y=1) (2.35)

La spécificité est définie comme la probabilité de bien classer un individu de la catégorie y = 0,
c’est-a-dire la probabilité de classer I’individu dans la catégorie y = 0 étant donné qu’il est
effectivement observé dans celle-ci :

Spécificité =Pr(y=0/y =0) (2.36)

Les taux TPC(1) et TPC(0) fournissent respectivement une estimation de la sensibilité et de la
spécificité.

Lorsque le seuil varie, le taux global de cas bien classés, la sensibilité et la spécificité changent,
puisque le classement est modifié. Afin de représenter les valeurs pour toutes les possibilités de
seuil, on dessine sur un graphique des courbes de sensibilité et de spécificité.

Sensibilité/spécificité

Sensibilité

—

Spécificité

p* seuil

En fixant un seuil p~, on obtient un classement avec une sensibilité et une spécificité égales a

*

p .
Comme indicateur de la capacité du modeéle a discriminer, on utilise la courbe ROC (Receiving

Operating Curve) qui indigue la sensibilité en fonction de la spécificité. La courbe ROC se
présente comme ci-dessous :
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Sensibilité

Spécificité
La surface sous cette courbe permet d’évaluer la capacité du modele a discriminer entre y=1 et
y=0.

ROC=0,5 — pas de discrimination
0,7<ROC<0,8 —  discrimination acceptable
0,8<ROC<0,9 — tres bonne discrimination

0,9<ROC —  Discrimination exceptionnelle

7. Détection des outliers et des observations influentes

Une observation est dite outlier lorsqu’elle ne suit pas le mouvement général des autres
observations de la série. La détection des outliers se fait via le résidu de Pearson défini par :

po it (2.37)
avec 7, = P(y,|x;,4).

On peut aussi utiliser celui de Pearson standardisé qui est défini par :

(o= (2.38)
avec h, = 7,(1— ), var(8)x,

Une observation sera déclarée outlier lorsque la valeur absolue de ces résidus est plus grande
que 2.

La quantité h, est appelé « puissance » (leverage) et permet d’identifier les observations avec

une valeur extréme sur une variable explicative. Ces observations sont appelées points avec une
puissance élevée (high leverage)®.

! La puissance est une mesure de la distance avec laquelle une variable indépendante dévie de son point moyen.
Ces points de puissance peuvent avoir un effet sur I'estimation des coefficients de régression.
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Au-dela des outliers, il existe parfois dans la base de données des observations qui ont des
influences significatives sur les coefficients de la régression, c'est-a-dire qui peuvent changer
aussi bien le signe que les coefficients lorsque celles-ci sont retirées. La détection de ces
observations peut étre faite en utilisant la distance de Cook et les Dbeta.

La distance de Cook est donnée par 1’expression :

rizhii

Aoy &)

. . . 4
Au regard de ce critére, une observation sera suspecte si C, > —.
n

Le tableau synthétique ci-aprés fournit pour chaque indicateur le seuil tolérable :

Indicateurs Seuils
abs(r;) 2
abs(r™) 2
h., 2*k/n
C 4/n

Dans la pratique, ces indicateurs doivent étre combinés afin de produire des résultats
intéressants au risque d’exclure toutes les observations de la base de données. En fonction du
nuage des résidus, il est possible de modifier un temps soit peu les seuils prédefinis pour les
mémes raisons que précédemment.

8. Tests de significativité des coefficients

Pour tester la significativité des coefficients, trois statistiques de test sont généralement
utilisées: le test de Wald, le test du rapport de vraisemblance (LR test) et le test du multiplicateur
de Lagrange (LM test). Ces trois statistiques de test sont utilisées pour tester plus généralement
des restrictions sur les coefficients des modeles. Elles sont asymptotiquement équivalentes,

mais elles ont des comportements différents en petits échantillons. Nous allons développer les
deux premiéres statistiques de test.

8.1 Test de Wald

Dans le cas ou I’on veut tester la significativité d’un seul coefficient, la statistique de Wald est
définie a partir de la statistique :

7=2 N0 (2.40)
Oy
Onadonc que :
W =2z > ) (2.41)

Si wy désigne la valeur critique au seuil « d'un Khi-deux a 1 degreé de liberté, alors la stratégie
de test est la suivante:
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- Si W <w, : on accepte I'hypothése que le coefficient a, n'est pas significativement

différent de zéro. En d'autres termes, la variable correspondante X, n'est pas
significative dans I'explication du phénomeéne étudié.

- SiW >w, :onaccepte que la variable x, est significative pour le modéle spécifié.

8.2 Test du rapport de vraisemblance

Pour tester la significativité du coefficient a; a I’aide du test du rapport de vraisemblance, on
compare le modele saturé au modéle estimé en enlevant la variable x; de la liste des variables
explicatives. La statistique de ce test est:
2
A ==2,-1)> 2@ (2.42)
ou lo est la log-vraisemblance du modele estimé sans la variable explicative x;, c’est-a-dire

sous I’hypothéseH,:a; =0, et | est la log-vraisemblance du mod¢le sous I’hypothése
alternative.

Le test du rapport de vraisemblance est plus performant que le test de Wald. Dans certains cas,
le dernier peut accepter 1’hypothése nulle alors que le coefficient en question est bien
significatif.

On peut également utiliser un test du rapport de vraisemblance pour tester la significativité de
plusieurs coefficients du modéle. Le principe du test reste toujours le méme : on estime le
modele sous les deux hypotheses et on calcule la statistique du rapport de vraisemblance.

9. Interprétation des coefficients et calcul des effets marginaux

Nous avons vu que dans les modeles Probit et Logit, les parametres du modeéle ne sont identifiés
qu’a une constante multiplicative pres. Ils ne peuvent étre identifiés sans imposer des
restrictions sur la moyenne et la variance du terme d’erreur. Toutefois, les conditions
d’identification n’affectent pas la probabilité de I’événement. Il ne faut pas également perde de
vue que les coefficients estimés refletent la relation entre les variables explicatives et la variable
latente. Par conséquent, 1’ordre de grandeur des coefficients n’a, en lui-méme que peu
d’importance. Les seules informations vraiment directement interprétables sont les signes et les
valeurs relatives des coefficients. Le signe d’un coefficient indiquera si la variable explicative
associée influence la probabilité de I'événement a la hausse ou a la baisse. Un coefficient a;

positif signifie qu'un accroissement de X; joue dans le sens d’une plus grande probabilité

d’observer I’événement y =1.

9.1 Calcul des effets marginaux

En pratique, on se sert des effets marginaux pour étudier I’effet d’une variable explicative sur
la probabilite de I’événement étudié. L’effet marginal d’une variable x; est la dérivee de la

probabilité estimée par rapport a cette variable :
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Em(x,) = F D) _ ¢ ixa)x a, (2.43)
an
Pour un Logit :
Em() FXA € g (2.44)
axj (1+ e*?

Pour un Probit :

‘A 1.0
Em(x) = P& _ 1 5 s (2.45)
OX; Vo

Dans le modéle linéaire 1’effet marginal des variables explicatives sur la probabilité de
réalisation de 1I’événement y =1est constant. Au contraire, ici cet effet marginal varie en
fonction du point a partir duquel il est apprécié. Néanmoins, le signe de ’effet marginal est
celui du coefficient.

Cependant on peut évaluer un effet marginal synthétique dans 1’échantillon, qui renseignerait
sur I’impact moyen d’une variation unitaire de la variable explicative. Deux solutions sont alors
envisageables. On peut calculer I’effet marginal moyen en remplagant les valeurs individuelles
X; par leurs moyennes empiriques calculées sur toutes les observations. Ce qui donne :

Em(x;) =

—6:(’_" %) _ t(xa)xa, (2.46)

i

On peut également considérer la moyenne des effets marginaux individuels.

Em(x,) = %Z aFa(;‘"é) (2.47)

Pour une variable qualitative binaire s, I'effet marginal s'obtient en faisant la différence des
probabilités:
Em(s)=P(y=1/x,s=1)-P(y=1/x,5s =0) (2.48)

On parle dans ce cas d’effet discret.

On peut également calculer une élasticité qui présente 1’avantage par rapport a I’effet marginal
d’étre indépendante de 1’unité de mesure de la variable explicative:

OF(x'8) X . f(x'8)
g = ———=4X —
ox; F(x'8) F(x'&)

]

(2.48)

Cette expression prend une forme simplifiée dans le cas du modéle Logit:
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£ =X, —— (2.49)

9.2 Comparaison des estimations des modeéles Logit et Probit

Les restrictions sur les moyennes et les variances des erreurs permettent certes d'identifier les
modeles; en revanche, ces restrictions d'identification rendent les valeurs numériques des
paramétres arbitraires. En effet, la différence de variance (1 pour le Probit et 72 /3 pour le
Logit) implique une différence dans les valeurs numériques des coefficients estimés Logit et
Probit. Les coefficients Logit et Probit ne peuvent étre comparés directement qu’a la condition

de prendre la précaution de pré-multiplier les coefficients Probit par 7z/\/§(ou de diviser les

coefficients Logit par 72'/\/5). Autrement dit, si on prend en compte la différence de variance,
on a l'approximation :

A T A A
aIogit = = Qpropit = 1’8 X Apopit (250)

J3

Les résultats des modeéles Probit et Logit sont généralement similaires si I’on tient compte des
problémes de normalisation. Toutefois, il convient d’étre prudent dans I’utilisation des
approximations pour comparer ces deux modeles. Il est toujours préférable de raisonner en
termes de probabilité et non en termes d’estimation des coefficients pour comparer ces résultats
(Amemiya, 1981).

9.3 Odds-Ratio

Les coefficients du modéle Logit ont une interprétation intéressante qui justifie son utilisation
intensive en épidéemiologie. On a en effet :

In{ Prob(y, =1/ xi)}

p.
=h| —— |= P+ i 2,51
Prob(y, = 0/x) n( j 8y +aX; +...+ X (2.51)

1-p

Les coefficients a;sont les effets marginaux des variables explicatives sur le logarithme du
rapport des cotes p,/1— p,. L’équation (2.51) est appelée transformation Logit et est notée
logit(P(y =1/x). Si on posec, = p,/1— p,, on interpréte ce rapport en disant qu’il y a c; fois

plus de chance que I’événement Y, =1 se réalise qu’il ne se réalise pas.
On definit le Odds Ratio (OR) associé a une variable x; par :

P(y, =1/x; =1)
_ 1-P(y; :1/Xij =1 _ p,/(1-p,)
X P(y; :1/Xij =0) Py /(1 — Py)
1-P(y; =1/x; =0)

OR

(2.52)

ou p, représente la probabilité que y =1 pour un individu pour lequel x; =1 et p,celle pour
un individu pour lequel x; =0.
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Un Odds Ratio de 1 signifie que la probabilité de y = 1est la méme chez les individus x; =1
que chez ceux x; = 0. Autrement dit, la réalisation de y = 1n’est pas associée a X; . En revanche,
un Odds Ratio différent de 1 signifie qu’il y a une association entre 1’événement y =1et la
variable x;. Si Odds Ratio est >1, cela signifie que le numérateur est plus grand que le
denominateur et, par conséquent, que les individus x; =1 ont une plus grande occurrence de

I’événement y =1 que ceux X; =0. C’est le contraire s’il est <I.
En utilisant I’expression (2.52) dans le cadre d’un modéle Logit, on a :

a0+ia,x|+aj
OR, =2 ¢ (2.53)

K
! a0+2a|x|
e [E3]

L’exponentiel du coefficient d’une variable explicative dichotomique s’interpréte comme son
Odds Ratio (I’Odds Ratio (OR) associé¢ au passage de la catégorie de référence X; =0a la

catégorie x; =1).

Lorsque la variable explicative est continue, on calcule un Odds Ratio associé a un
accroissement unitaire :

ao+zk;a|x|+aj(xj+l)
oR =% —_ _¢ (2.54)

K
! %*z X
e 1=1

On notera que 1’Odds Ratio dépend de I’unité de mesure de la variable.

Exemple : On observe un échantillon de 170 candidats a un concours d’entrée dans une grande
école. On s’intéresse a 1’association entre 1’option et I’admission.

Echec
Option Oui (1) | Non(0) | Total
Eco 17 73 90
Maths 46 115 161
Total 103 148 251

Risque d’échec chez les Eco=17/90=0,63.
Risque d’échec chez les Math=46/161=0,28.

Risque relatif RR=0,63/0,28=2,21 : le risque d’échec est 2,21 fois plus élevé chez les Eco que
chez les Math.

Odds chez les Eco=0,63/(1-0,63)=1,73 : les Eco ont 1,74 fois plus de risque d’échouer que de
réussir.
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Odds chez les Math=0,28/(1-0,28)=0,4 : les Math ont 2,5 fois plus de chances de réussir que
d’échouer au concours.

Odds-ratio OR=0,63/(1-0,63)/ 0,28/(1-0,28)= 1,73 /0,4=4,31.
10. Criteres de comparaison de plusieurs modeéles

Il n’existe pas de critére absolu permettant de comparer plusieurs modeéles alternatifs estimés a
partir d’un méme échantillon. Selon le critére retenu, un modeéle peut sembler plus performant
qu’un autre et moins performant pour un autre critere. Néanmoins, il existe un certain nombre
de criteres statistiques permettant de juger de la performance des modéles, le critére le plus
discriminant dépend de I’ objectif assigné au modele. Nous présentons ci-apres les deux groupes
de criteres les plus utilisés.

10.1 Taux de bonnes preédictions

On peut comparer les performances de deux modeles en comparant leur pouvoir prédictif, ¢’est-
a-dire leur capacité a classer correctement les observations. Pour cela, il faut définir une
stratégie de prédiction ou d’affectation sous la forme :

On décide que y;, =1 quand p, > p et y;, =0 sinon.

A partir de cette stratégie, on construit la table de vérité croisant les prédictions et les
observations réelles de la variable y. De cette fagon, on calcule le pourcentage d’observations
bien prédites, qui fournit un critere de performance du modéle. Toutefois, ce critére est trop
optimiste pour trancher de fagon pertinente entre deux modeles concurrents.

10.2 Criteres d’information
Plusieurs critéres statistiques sont couramment utilisés dans les logiciels d'économétrie. Ces

critéres fournissent une mesure de la quantité d’information donnée par le modéle. 1l s’agit
notamment du :

- Critere d’Akaike :
AIC=-2log(L)/n+2k/n (2.55)
- Critére de Schwarz :
SC=-2log(L)/n+klog(n)/n (2.56)
- Critére d’Hannan-Quinn:
HQ=-2Log(L)/n+2klog( Log(n))/n (2.57)

Critere d’Information Bayésien :

BIC = (2log(L) - 2log( L)) — ddI * In( n) (2.58)
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- Critere d’Information Bayésien Modifié :

BIC = (2log(L)-2log(L,))—k*In(n) (2.59)
Le ’meilleur mod¢le’” est celui qui fournit un critere minimal.

11. Test d'hétéroscédasticité résiduelle

Le test d'hétéroscédatsicité est trés important dans les modeles de choix dichotomique. En effet,
I'nétéroscédasticité biaise I'estimation de la matrice de variance-covariance, ainsi que les tests
statitiques, car en présénce d'hétéroscédatsicité les estimateurs ne sont pas asymptotiquement
efficaces.

Pour tester I'nypothése d' hétéroscédatsicité résiduelle, on considére la formulation générale due
a Harvey (1976):

ol =e”V (2.60)

ou z'i estun vecteur de variables de dimension (1x g) . Cette spécification est compatible avec
le modéle Probit seulement. L'hypothése nulle d'homoscédatsicité estH, : 77 =0. Le vecteur z'

ne contient pas de terme contant. Pour tester cette hypothese, on peut utiliser le test du rapport
de vraisemblance ou celui du multiplicateur de Lagrange.

11.1 Test du rapport de vraisemblance

La log-vraisemblance du modeéle hétéroscédastique est :

nL=Yyh @{L?)}(l— y)in [1—@[&]} (2.61)

i1 exp(z'n exp(z';n
Les conditions de premier ordre s'écrivent:

aln L_&[a0i-®) ] vy _
_z{q)(l CD) X;=0 (2.62)

TRIL 1 etz (— X a)=0 (2.63)

On évalue les log-vraisemblances du modele libre et du modéle contraint. La statistique du
rapport de vraisemblance est définie par :

LR=-2(nL, —InL)— #2(g) (2.64)
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11.2 Test du multiplicateur de Lagrange

Le test du multiplicateur de Lagrange est base sur les conditions de premier ordre du programme
de maximisation de la fonction de vraisemblance sous 1I’hypothése alternative. On vérifie Si ces
conditions sont violées lorsqu’on se situe sous I’hypothése nulle. Autrement dit, dans
I’hypothese nulle H, : 77 =0, on doit vérifier la condition suivante :

6|nL ¢ (Y; L a) -
‘Z{q)(l @)} (-x,a)=0 (2.65)

Cette condition implique 1’orthogonalité de z, (—x,a)avec le résidu normalisé du modéle.

Pratiqguement, ce test s'effectue simplement a partir de la régression du modele artificiel suivant:

Yob X)L, HGAXAL (2.66)

D RN D RN T A

La variable expliquée de 1’équation de test est un résidu normalisé. det P, = (X', @) sont

estimées sous I’hypothése nulle. La statistique de test est égale a la somme des carrés des fi:

n |
LM =) #*=nR* - x*(9) (2.67)

i=1

11.3 Calcul des effets marginaux en présence d'hétéroscédasticité

En présence d'hétéroscédasticité, I'effet marginal d'une variable w, pouvant étre dans x ou z
est :

EM(W):aProb(yzl):¢{ X4 }ék—(x'é)ﬁk (2.68)
k ow, exp(z7) | exp(Z7)) |

Si w, apparait seulement dans x alors I'effet marginal se réduit a:

EM(WK):q‘{ Xa_ } . (2.69)
exp(z'n7) | exp(z'n)
Siw, apparait seulement dans z alors I'effet marginal se réduit a:
EM (w,) =—¢{ ” a. - } x a).”E (2.70)
exp(z'7) |exp(z'7)
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12. Variables explicatives polytomiques

Dans les applications, il est souvent fréquent que des variables qualitatives figurent parmi les
variables explicatives dans les modeles de regression. Etant donné que les codes associés a ces
variables sont arbitraires, le codage ne servant qu'a reperer les catégories et n'a pas de sens
numeérique, il est conseillé d'introduire une variable indicatrice ou binaire par modalité. Par
exemple, pour une variable comme la catégorie socio-professionnelle (CSP) ayant 3 modalités
codées 1, 2 et 3, on définit 3 variables indicatrices de la fagon suivante: CSP1=1 si CSP=1, 0
sinon; CSP2=1 si CSP=2, 0 sinon; CSP3=1 si CSP=3, 0 sinon.

Cependant, on ne gardera pas ces trois variables dans le modele, car elles ne sont pas
linéairement indépendantes. En effet, chaque individu a une et une seule CSP, donc
CSP1+CSP2+CSP3=1. Il y a un probleme de multicolinéarité si le modéle contient une
constante.

Il est suggéré de supprimer une des 3 variables indicatrices. La modalité répresentant la
situation la plus courante sert de modalité de référence et on supprime la variable
correspondante. Cela revient a dire que son coefficient est nul. Dans le choix de la variable a
inclure on peut comparer les modeles obtenus avec les différents codages et retenir celui qui a
la plus grande vraisemblance. Dans tous les cas, ’interprétation des coefficients se fait par
rapport a la modalité de référence. Dans un modele de regression sur variables binaires,
I'ensemble des situations de référence est representé par la constante.

On peut utiliser un test du rapport de vraisemblance pour tester 1’effet d’une variable
polytomique sur la probabilité de réalisation de I’événement. Soi M le nombre de modalités de
la variable. Si cette variable est remplacée dans le modele par M - 1 variables binaires, alors
tester ’effet de la variable polytomique revient a tester la nullité simultanée des M - 1
coefficients associés aux différentes modalités. La statistique de test du rapport de
vraisemblance suit un Khi-deux a M - 1 degrés de liberté.

Lorsque la variable explicative est polytomique a modalités ordonnées, le choix de la modalité
de reférence est moins difficile. Dans ce cas, en effet, on a trés souvent intérét a prendre comme
référence la modalité la plus basse. On peut alors commenter les coefficients comme s’il
s’agissait de variables continues.
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Chapitre 3

Modeles multinomiaux

1. Introduction

Les modeles multinomiaux sont des modeéles ou la variable dépendante est une variable
qualitative a plusieurs modalités. Il existe trois grandes catégories de modeles multinomiaux
qui se distinguent de la facon de modéliser le processus aléatoire ayant engendré les réalisations
de la variable dépendante et/ou par le choix du codage de la variable.

- Les modeles ordonnés
- Les modeéles non ordonnés
- Les modeles sequentiels

Dans la pratique, les modeéles polytomiques non ordonnés sont les plus fréquents. Dans cette
catégorie, on trouve notamment le modéle Logit multinomial et le modéle Logit conditionnel
de McFadden, qui sont les modeéles les plus utilisés et qui constituent une extension du Logit
binaire.

Si ces modeles sont simples, ils posent toutefois un probléme de cohérence en raison d’une
propriété peu réaliste d’Indépendance des Alternatives non Pertinentes. C’est pourquoi des
modeles alternatifs ont été développés comme le modéle Logit hiérarchisé ou le Probit
multinomial. Ces derniers requierent toutefois des techniques d’estimation relativement
complexes.

2. Modeéles polytomiques ordonnés
Dans les modéles polytomiques ordonnés, la variable dépendante est une variable qualitative

ordonnée, c’est-a-dire dont les modalités peuvent étre hiérarchisées comme dans les exemples
suivants :

laucun niveau l1pas dutout d'accord
2 primaire 2 pas d'accord

~ | 3sécondaire = 3d'accord
4sup erieur 4 parfaitement d'accord

2.1 Modélisation d’une variable polytomique ordonnée

On considére une variable dépendante ordonnée y prenant J modalités. Pour modéliser cette
variable, on peut adopter une approche en termes de variable latente en posant que :
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yr=ﬂ0+ﬂlxli+"'+ﬂkxki +e =X;[+¢ (3.1)

ol les X, ... X,sont les variables susceptibles d’expliquer y~ . Comme dans le cas binomial, la
modalité de Y dépendrait directement de la position de y  par rapport & différents seuils:

1si y; <c,
2si ¢, <y, <c,
y=1. (3.2

Jsi y =c,,
On peut écrire de facon plus compacte :
y, =] sic;, <y; <c,avec ¢, =—0et C, =+ (3.3)
Si on désigne par F la fonction de répartition du terme d’erreur, on a :
Pr(y, =1) =Pr(x; S +e pc) =F(c, - X f) (3.4)
Pr(y,=J)= Pr(cH <X,p+e < cj) = F(cj -X, p)— F(cH -x;0),2<j<J -1 (3.5)
Prob(y; =J)=Prob(x; B+e fc;)=1-F(c,,—X; B) (3.6)

Selon que F est la fonction de répartition de la loi normale ou logistique, on a un modéle Probit
ordonné ou un Logit ordonné.

2.2 Fonction de vraisemblance et estimation

La fonction de vraisemblance du modéle s’écrit :

L(y!ﬂicll""c.]) :ﬁHPrOb(Yi = j)y” :ﬁH[F(Cj - X B) - F(Cj—l - X ﬂ)]yij (3.7

i=1 j i=l ]
ou la variable y;; est définit pary; =1siy; = j.
Les coefficients du modéle sont estimés par la méthode du maximum de vraisemblance :

= Arg Mﬂax log L(y, 3,¢,,...,C,) (3.8)

¢; =Arg Max log L(y, f,c,,...,Cy) (3.9

On rencontre ici les mémes difficultés que celles qui ont déja été évoquées dans le cas binaire.
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o |l est impossible de dissocier I’estimation de la constante 3, de celle des seuils c,, ...
C, -

e Dans le cas du modeéle Probit ordonné, il est impossible de dissocier 1’estimation des
differents coefficients de celle de la variance de I’erreur (qu’on pose par convention
égale a 'unité) : les coefficients estimés ne nous renseignent donc sur les valeurs

théoriques de ceux-ci qu’a un facteur multiplicatif prés. Seuls comptent les signes et les
valeurs relatives de ces coefficients.

Toutefois, si les seuils ¢; sont connus (discrétisation d’une variable continue par exemple), les

parametres S et o sont identifiés des lors que J > 2 car la variabilité dans la variable de seuil

permet d’identifier 1/ o (dans un modele dichotomique J =2, il n’y a pas de variabilité des
seuils).

2.3 Test de régression parallele

Avant de discuter de I’interprétation d’un modele ordonné, il est indispensable de comprendre
et tester une hypothése implicite de ce modéle connu sous les noms d’hypothése de régression
paralléle, pour le modéle Logit ordonné, et d’hypothése de proportion des odds. Les équations
(3.4) a (3.6) peuvent étre utilisées pour la dérivation des probabilités cumulées qui s’écrivent
sous la forme simplifiée par :

Prob(y; < j)=F(c; -x;5),1<j<J-1 (3.10)

Ces dernieres équations montrent que le modele de régression ordonné est équivalent a J-1
régressions binaires sous I’hypotheése fondamentale que les coefficients estimés par rapport aux
variables explicatives sont identiques dans chacune des équations. Par exemple, avec J=4 et
une seule variable explicative X, nous avons en contraignant 1’ordonnée a 1’origine & 0 :

Prob(y, <1) = F(c, - /x) (3.11)
Prob(y, <2) = F(c, - /%) (3.12)
Prob(y, <3) = F(c, — %) (3.13)

Si nous représentons I’argument de F sur un graphique de dimension deux, nous avons que la
pente B est identique (droite paralléle) au niveau de chacune des équations.

Cette hypothése de constance des coefficients £ est implicite mais doit étre testée pour assurer
la validité du modéle de régression ordinale. Le test est effectué en comparant les coefficients

issus des J-1 equations binaires obtenues ci-dessus. Ces équations seront reecrites en modifiant
p de sorte & ce qu’ils varient d’une équation a une autre comme suit :

Prob(y; < j)=F(c; X, 5;),1<j<J-1 (3.14)

L’hypothése de régression paralléle implique 1’égalité¢ B, = 5, =K = 3, ;. L’hypothése sera
vérifiée a condition que les 3, = /3, =...= 3, , soient trés proches. Le test commun utilisé pour
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s’assurer que cette hypothése est vérifiée est celui développé par Brant (1990). Toutefois, il
existe un autre test basé sur le rapport de vraisemblance développé par Wolfe et Gould (1998).

Une violation de cette hypothese entraine la non-validité du modele ordonnée sous la forme
présentée ci-dessus. Il faut recourir soit aux modeles ordonnés généralisées soit aux modeles
multinomiaux non ordonnés.

2.4 Interprétation des coefficients

Les coefficients ne sont pas directement interprétables. On doit calculer I'influence marginale
des variables sur les probabilités en dérivant les probabilités conditionnelles. Les effets
marginaux par rapport a une variable explicative X, quelconque sont donnés par les formules

suivantes:

OProb(y, =1/%)

- =B f(c,—x, ) (3.15)
aProbS)/(i- =J/%) _ —ﬂk[f (¢, - X, ) f(c;s—x, /3)] (3.16)
8Pr0b(a):;:\]/xi):ﬁkf(CJ_l_x.iﬂ) (3.17)

A partir des effets marginaux individuels, on peut calculer des effets marginaux globaux sur
I’échantillon, qui renseignent sur I’impact moyen des variables explicatives sur la probabilité
des différents événements. Deux méthodes peuvent étre utilisées. La premiére évalue ’effet
moyen en prenant la moyenne simple des effets marginaux individuels :

em, = 3 CPTORU=IN) =B [ x - 1,0 -, ) (319)

La deuxiéme méthode calcule I’effet marginal global au point moyen :

o _ OProb(y = j/x)|
‘< an |x

——Blf(c,-xp)-f(c,,-xpB)] (3.19)

=X

L’effet marginal de la variable X, sur la probabilit¢ d’avoiry =J est de méme signe que le
coefficient S, tandis qu’il est de signe opposé sur la probabilité d’avoir y =1. Pour les modalités
intermédiaires (j=2..J —1), le signe de I’effet marginal n’est pas forcément celui du

coefficient, la quantité entre crochets étant de signe indéterminé. On interprétera donc un
coefficient B, positif en disant que tout accroissement de X, contribue a rendre plus probable la

modalité la plus élevée de y . Un coefficient négatif signifie a contrario que tout accroissement
de x, contribue a tirer y vers ses modalités les plus faibles.

L’interprétation des coefficients d’'un modele ordonné est donc délicate, surtout pour les
modalités intermédiaires. On doit pour ce type de modele toujours calculer les effets marginaux
et ne pas se contenter de présenter les coefficients estimes.
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2.5 Pouvoir prédictif du modéle

On peut appliquer aux modeles ordonnés les mémes calculs d'indicateurs de performance que
ceux mis en ceuvre pour les modéles binomiaux. Le R? de McFadden se calcule de la méme
maniere. Quant a la table des bonnes prédictions, on peut considérer que la valeur de y, prédite

par le modéle est celle qui correspond a la probabilité la plus forte.

3. Modeéles multinomiaux non ordonnés
3.1 Logit multinomial
3.1.1 Modélisation

Ce modele généralise le modéle Logit binaire. On modélise plusieurs choix non ordonnés. Par
exemple, le choix du mode de transport : le bus, transport public, voiture, autre (vélo, marche a
pieds, etc.). L’ordre dans lequel sont rangées les différentes occurrences de Y est sans
importance et ne doit pas affecter le calcul des probabilités de ces occurrences.

Soit y lavariable dépendante prenant les modalités1,2,..., J . La probabilité d’occurrence d’une
modalité j s’écrit :
. e /i
Pr(y, = j/%)=5— (3.20)

eX'iﬁ.
,le j

Les coefficients f dépendent de la catégorie a laquelle appartient 1’individu. Pour chaque
variable explicative, on estime autant de coefficients que de modalités de y , chacun mesurant
I’effet de la variable sur I’appartenance a 1’une des J modalités de y . On est cependant confronté
a un probleme d’identification : en remplagant #; par ; + & , la probabilité ne change pas. Une
infinit¢ de valeurs de $;sont donc possibles, qui conduisent a une méme valeur de la

probabilité. Pour résoudre ce probleme, on doit imposer aux coefficients une condition
d’identification. Celle qui est souvent retenue est d’imposer la nullité de tous les paramétres
relatifs a une catégorie donnée, appelée modalité de référence. Le choix de cette catégorie de
référence est arbitraire. Par exemple, si on décide que la modalité de référence correspond a j =
1 alors la condition d’identification £, =0 implique que :

Bo=Pu=-=Pu=0 (3.21)

Avec cette condition identifiante, I’équation de probabilité devient :
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X B
Pr(yi:jlxi)zj—’ j>2 (3.22)

1+ Zex‘ﬁj

j=2

La probabilité que y =1 ne sera pas modélisée car elle est connue a partir des autres probabilites.

En conséquence, les coefficients ne peuvent étre estimés que pour les J-1 modalités, sans la
modalité de référence. La conséquence importante de cette contrainte d’identification est que
le modéle mesure I’effet d’une variable explicative non sur la probabilité d’appartenir a une
catégorie donnée, mais sur la probabilité d’appartenir a la catégorie plutdt qu’a la catégorie de
référence, ou, plus précisément, sur le rapport entre la probabilité d’appartenir a la catégorie et
la probabilité d’appartenir a la catégorie de référence. En effet, il est facile de montrer que :

In [Pr(Yi = J)/Prob(y; =1)]: Xi (B = B)=PojtB1 X+t By X (3.23)

Ainsi I’interprétation des coefficients d’un modéle Logit multinomial se fait en termes d’écart
au reférentiel. Par exemple si B, > 0, tout accroissement de x, contribue a rendre plus probable

le choix de la modalité j par rapport & celui de la modalité de référence.

Les coefficients 3,;sont obtenus par maximisation de la log-vraisemblance de 1’échantillon

d’estimation :

J

IogL:Zn:ZJ:cﬂ{x'i B, —|n(1+ie*’iﬂi ﬂ: SX, B, - n In(1+ _J e*’iﬂiJ (3.24)

i=1 j=1 j=2 i=1 j=2 i

>

ot la variable &;; est définit par &; =1siy; = ].

3.1.2 Interprétation des coefficients d’un Logit multinomial

L’interprétation des coefficients d’un modéle multinomial est délicate. En effet, si on calcule
I’effet marginal d’une variation de X, sur la probabilité que 1’individu choisisse j (plut6t que 1),

on obtient:

aPr(sé; i _ Pr(y = j/x){ﬁkj _iﬁkh Pr(y = h/x)} (3.25)

ou B,estla kie™ composante de S ; associée a la variable explicative x, .

Pour chaque variablex,, on doit calculerJ effets marginaux associés aux probabilités
py =Pr(y, =), i=1..3.

On constate que 1’effet marginal n’est pas de méme signe que celui du coefficient. Il dépend
des valeurs de tous les coefficients et non seulement de 3,; . De plus, on note que la valeur de
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I’effet marginal dépend du point a partir duquel on le mesure. Pour cette raison, on le calcule le
plus souvent au point moyen.

Le probléme d’interprétation des coefficients se complique lorsque la variable explicative est
une variable qualitative polytomique, puisqu’il faut imposer, a la variable, une modalité de
référence a laquelle toutes les autres modalités de la variable doivent étre comparées. Dans ce
cas, la lecture des résultats doit « gérer » deux références : la catégorie de reférence de la
variable dépendante et la modalité de référence de la variable explicative.

On peut calculer le rapport des probabilités comme suit:

Pr(yi = J) _ ex'i(ﬁrﬁ]) (326)
Pr(y; =1)

Ce rapport est indépendant des autres modalités : le rapport des probabilités associées au choix

entre deux modalités ne dépend pas des autres modalités. Ajouter ou supprimer une tierce

modalité, ou bien modifier les caractéristiques d’une modalité déja incluse, ne change pas le

rapport entre ces probabilités. C’est ce qu’on qualifie de propriété d’indépendance des

alternatives non pertinentes (I1A : Independance of Irrelevant Alternatives).

Remarque : Le modele Logit multinomial est formellement équivalent a une analyse
discriminante linéaire si toutes les variables explicatives sont continues et distribuées selon une
loi normale multidimensionnelle de telle maniere que les J lois conditionnelles a 1’appartenance
de I’individu a I’une des J classes ont la méme variance (Amemiya, 1981 ; Maddala, 1983 ;
Sautory et Vong, 1992; Bardos, 2001). On peut donc utiliser ce modéle pour répondre aux deux
objectifs de ’analyse discriminante : trouver la fonction linéaire des variables individuelles qui
sépare au mieux les classes (les catégories) ; affecter a une classe un nouvel individu dont on
connait seulement les caracteéristiques.

3.1.3 Tests d’hypothéses sur les coefficients

Les principaux tests d’hypothése examinés ici portent sur la nullité d’un ou plusieurs paramétres
du modele. A cet effet, on peut utiliser la statistique de Student ou celle du rapport de
vraisemblance.

A) Significativité d’un coefficient

On veut tester la nullité du parametre S associé a une variable x ; caractéristique de choix dans
un Logit conditionnel, ou du parametre #; d’une variable individuelle, associé a la catégorie j,

dans un Logit multinomial. Pour ce faire, on utilise la statistique de Student définit par le rapport
de la valeur estimée du paramétre a son écart-type estimé.

B) Significativité de plusieurs coefficients

Si on veut tester la nullité simultanée de plusieurs parameétres, on utilise le test du rapport de
vraisemblance. Ce test consiste a comparer la vraisemblance L,d’un mode¢le contraint a celle

L ,d’'un modéle non contraint. La statistigue de test LR=-2(InL,-InL,) suit
asymptotiquement une loi du Khi-deux dont le nombre de degrés de liberté est égal a la

32



différence entre le nombre de parametres du modéle non contraint et le nombre de parametres
du modele contraint.

Le test du rapport de vraisemblance peut étre utilisé apres 1’estimation d’un modéle Logit
multinomial pour tester l’effet d’une variable explicative X, sur I’appartenance a une

quelconque des J catégories, c’est-a-dire si au moins un des parameétres f5,, 5, ,..., 5, de la
variable est non nul. Cela revient a tester la nullité des J-1 coefficients: g, =3, =...= §, =0.

Le principe du teste consiste a calculer la vraisemblance du modele complet (L) et celle du
modele contraint (L,) obtenu en supprimant la variable explicative x, . La statistique du test
LR=-2(In L, —In L,) suit asymptotiquement une loi du Khi-deux a J —1degrés de liberté. Le
rejet du modele contraint signifie qu’un des parameétres au moins n’est pas nul : la variable X,
a bien un effet.

C) Test de ’hypothése I1A

Certains auteurs ont montré que dans certaines occasions, 1’hypothése d’indépendance des
alternatives non pertinentes est trop restrictive pour modéliser correctement les comportements
des individus (voir I’exemple du « bus bleu/bus rouge » de McFadden (1973) repris dans
Horowitz et Savin, 2001 ; et celui du métro dans Thomas, 2000).

La propriété d’IIA peut étre testée. L hypothese nulle est celle d’ITA. L’idée du test proposé par
Hausman est de comparer deux estimateurs des coefficients sous les hypothéses nulle et
alternative. Les étapes de ce test sont les suivantes :

C.1 Test de Hausman

- On estime le modele complet avec toutes les J alternatives :

A

By

>
I

(3.27)
B,

- Onestime le modeéle contraint en élevant la ou les alternatives concernées et en excluant
les individus qui ont choisi ces modalités:

b
B=|" (3.28)

- On compare les valeurs des coefficients obtenues dans ces deux estimations. Si la
propriété 1A est valide, elles doivent étre proches. L’écart entre les deux ensembles de
parametres s’estime en calculant la statistique de test :
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A ~ N ~ k1 A ~
H = (8- BY|var(B) —var( B)] (8- B) ~ 2 (6) (3.29)
ou k est la dimension du vecteur de paramétres.
C.2 Test de Small-Hsiao

Comme Hausman, Small et Hsiao ont développé un test qui permet également de vérifier
I’hypohése IIA. Ce test procéde comme suit :

- Diviser I’échantillon en deux (S et Sy) de tailles a peu pres égales.
- Estimer dans chacun des échantillons le modéle complet. On obtient 3% et % a partir

~ 1 ol 1 ot
desquels on calcule 5>% = — % + (1- =) .
V2 V2

- Estimer le mode¢le contraint dans I’échantillon 2 et obtenir ,@CSZ .

- Calculer la statistique SH, =—2[L(ﬁ5152)—L(,5’fZ)J qui suit une loi de Khi-deux
admettant comme parametres le nombre de paramétres dans le modeéle contraint.

Remarque : Dans la pratique, les tests d’Hausman et Small-Hsiao peuvent donner des résultats
contradictoires. Cheng et Long (2005) ont montré que :
- Lapuissance du test d’Hausman est faible méme si la taille de 1’échantillon atteint 1 000.
- Pour certains types de données, le test Small-Hsiao a une bonne puissance pour les
¢chantillons de taille supérieure ou égale a 500. Pour d’autres échantillons, ce test a une
faible puissance indépendamment de la taille de 1’échantillon.

3.2 Modele Logit multinomial conditionnel
3.2.1 Modélisation

Le Logit multinominal admet que les valeurs prises par les variables explicatives ne sont pas
influencées par la nature du choix et que les probabilités attachées aux différentes modalités ne
différent les unes des autres que par le fait qu’a chaque modalité est attaché un jeu spécifique
de coefficients. Il existe cependant une autre possibilité : considérer un vecteur de coefficients
constants quel que soit I’individu et la modalité et autoriser les variables explicatives a dépendre
des modalités. Cette possibilité est a la base du modele Logit conditionnel de McFadden (1973).

En reprenant la démarche utilisée pour le logit multinomial et en remplacant formellement
X'; B; par x'; B, le modeéle conditionnel s’écrit :

X'y B ex;}lﬂ eﬂo+ﬂ1XIij+---+ﬂkX;ij
Pry; = 1) =5 T L T & i (3.30)
Ze ij 1+ze ij 1+Ze 0 1) T k 2kij
i1 =2 =

avec x; = X' —X';;.
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Parce que toutes les variables explicatives dépendent de chaque choix j, le probléeme
d’identification rencontré avec le Logit multinomial ne se pose pas : il n’y a pas a imposer des
contraintes sur 5. Les coefficients £ s’interprétent comme associés aux différences des

variables de chaque modalité par rapport aux variables du cas de référence (modalité 1).

Prenons I’exemple du choix des modes de transport. On considére les modes suivants : bus
(modalité 2), la voiture (modalité 3) et les autres modes de transport (modalité 1). Les variables
explicatives sont exprimées en différences par rapport a leurs valeurs prises dans la modalité 0.
I1 s’agit par exemple du temps de transport moyen du domicile au lieu de travail pour le mode
j, noté t; =x,; et le colt au kilométre de ce mode, noté c;; = x,;; . Si on suppose que ce sont
les deux seules variables explicative, on a 8 =(4,,,,3,). La probabilité qu'un individu i
caractérisé par des temps relatifs (t;,t;,) et des codts relatifs (c;,c;,) choisisse le mode de

transport j = 2,3 s’écrit :

eﬁo +Bitij+ BaCij e xii B
Priy, = 1) =——= =—= (3.31)
1+ ZeﬁoJrﬂltij +B2Cj; 1+Zexijﬂ
i—2 i—2

avec xi’;':( t, cij).

1 Lij o
La log-vraisemblance associée a un modeéle Logit conditionnel s’écrit :
n n J 8 n J . n J 5
g L=>">"6,x, 8-> In| > e |=>">5x 8-> Inj1+ > e (3.32)
i=1 j=1 i=1 j=1 i=1 j=2 i=1 j=2

On détermine le vecteur de coefficients # en maximisant cette fonction.

3.2.2 Interprétation des coefficients d’un Logit conditionnel

Effets marginaux

Les effets marginaux mesurent les variations de la probabilité de choisir la modalité j quand la
variable explicative x, «augmente » d’une unité. On peut calculer deux types d’effets
marginaux.

Effet direct :
OPr(y=j)

ki

efmar, = =P(y=j)x@-P(y=j)x 2, (3.33)

Effet croisé :

oPr(y =h) _

ki

efmar,; = —P(y = j)x(P(y=h)x B, h#j (3.34)
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Les effets marginaux dépendent donc des valeurs des variables explicatives.

L’effet marginal direct (dérivée par rapport a x ;de Pr(y = j) ) est toujours du signe de /3 , tandis

que I’effet marginal croisé est toujours du signe opposé a celui de . Cette propriété est une
conséquence directe de la forme fonctionnelle des probabilités. On vérifie de plus que :

3 0Prly =) Pr(y N _o (3.35)

h=1 OX;

La variation d’une des probabilités a I’augmentation d’une caractéristique est compensée par
les variations concomitantes des autres probabilités.

On peut calculer de la méme maniére les élasticités directes et croisées.

Elasticité directe :

_8Pr(y=j)>< X; o -
T o Pr(y:j)—(l P(y = )xx;8 (3.36)

J
Elasticité croisée :

_oPrly=h) X _
" X Pr(y = h)

]

—P(y=j)xx,B, h#j (3.37)

Les élasticités directes mesurent 1’effet, sur la probabilité de choisir j, d’une augmentation de
la caractéristique x de j. Les élasticités croisées mesurent les effets sur les probabilités des autres
choix, d’une augmentation de la caractéristique x de j, elles décrivent les substitutions possibles

entre j et h du fait de I’augmentation de X; . On remarquera que les élasticités croisées ne
dépendent pas de h. Elles sont les mémes pour tous les choix autres que j.

Probabilité d’un événement virtuel

Le modele Logit conditionnel permet d’estimer la probabilité associée a une modalité virtuelle
de la facon suivante :

e Xi’t]‘+lB

Pr(Yi = J) = J o .
1+Zex”ﬁ+ex““ﬂ
j=2

(3.38)

ol S désigne un estimateur convergent de gobtenu sur la base des modalités existantes ;
X = X, — Xy représente les caractéristiques exogénes de 1’individu associées a la J+1°m

modalité virtuelle.
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Considérons I’exemple précédent sur les modes de transport et supposons maintenant qu’on
cherche a évaluer la probabilité que la population adopte un nouveau mode de transport public

(le métro par exemple), en plus de ceux déja existants. Soient f., et C., les évaluations du temps

de trajet et du cotit au kilométre du nouveau mode de transport. La probabilité qu’un individu
| utilise le nouveau mode de transport (modalité 4) lorsque celui-ci sera effectivement mis en
en service est:

eﬁ’o +fiti 4+ BoCiy

Pr(yi =4) =

3 5 5 ot ~ ~ A~
1+ Z eﬁo +utij + PaCij + eﬁ0+ﬁ1ti4+ﬂ2ci4
i—2

(3.39)

On obtient une estimation de la probabilité que I’individu ichoisisse le nouveau mode de
transport plutét que les autres modes de transport.

La propriété 1A

Le logit conditionnel partage avec le logit multinomial la propriété I1A que le rapport de deux
probabilités de choix j et h est indépendant des autres modalités (de leur nombre, leurs
configurations, etc) :

Bl(xlij _Xlih)+'"+/}k (Xij—Xcin)

Pr(y; = . X=X’
(Vi =1) _ gotmxmn _ g (3.40)

Pr(y; =h)
On peut donc interpréter un coefficient comme une semi-élasticité : un coefficient positif
signifie que tout accroissement du différentiel dans les variables explicatives contribue a

accroitre la probabilité de choisir la modalité j par rapport a la modalité h.

Cette propriété peut étre testée en suivant la méme procédure que dans le modéle Logit
multinomial.
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Chapitre 4

Modeéles Tobit

1. Introduction

Les modéles de régression classiques supposent a travers 1’hypothése de normalité sur la
distribution des termes d’erreur que la variable dépendante est une variable aléatoire continue.
Par conséquent, elle ne peut prendre une ou plusieurs valeurs données avec une probabilité non
nulle. Cependant, pour certains phénomeénes économiques, cette hypothése semble irréaliste
dans la mesure ou la variable dépendante est continue mais peut prendre des valeurs isolées
avec des probabilités finies. Il s’agit en effet des modéles a variables dépendantes limitées. Dans
ces modeles, la variable dépendante n’est observable que sur un certain intervalle. Par exemple,
sur un échantillon aléatoire de ménages, on cherche a expliquer les dépenses d'un bien (par
exemple le logement) en tenant compte du fait que, pour une partie de 1’échantillon la dépense
est nulle. Pour cet échantillon la valeur nulle est observée avec une probabilité differente de 0.

350 +
300 - .
250 + .

200 + * o

150 + .

100 - .

50 -

depense du bien

0 100 200 300 400

revenu

De tels échantillons sont appelés des échantillons censures car la variable dépendante n’est
observable que pour certains ménages (ménages locataires notamment). L’échantillon est dit
tronqué lorsque pour une partie de 1’échantillon les observations relatives a la variable
dépendante et aux caractéristiques individuelles ne sont pas disponibles. Dans ce cas,
I’échantillon tronqué n’est plus aléatoire et 1’estimation utilisant cet échantillon pourrait donner
des résultats biaisés. Le modeéle censuré le plus simple est le modele Tobit (Tobin’s Probit)
considéré comme une extension du modele Probit permettant de traiter un certain nombre de
situations.

2. Speécification du modeéle Tobit simple

Reprenons I'exemple des dépenses d'un bien. Soit d; la dépense du ménage i consacrée a ce
bien. Pour un certain nombre de ménages on n'observe pas la dépense, par contre, pour d'autres
on a d; >0. Soit x; le vecteur des caractéristiques du ménage i. d; est fonction de x, a travers
un modeéle linéaire :

d; =x;a+y, 4.1)
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La variable Y; observée est définie de la fagon suivante:

yi=0; si d, >0, ¥;=0 sinon 4.2)

Autrement dit, on reporte une dépense nulle pour les ménages n'ayant pas révélé un montant de
dépense. On obtient de cette facon un modele dit censuré a gauche. Le nuage de points sera
mal décrit par la relation linéaire précédente puisqu'il contient deux parties nettement
differentes (voir graphique ci-dessus).

Comment expliquer les variations des dépenses entre les différents ménages de I'échantillon
alors que cette variable n'est positive que pour certains ménages? Les autres ménages ont une
valeur nulle pour cette variable mais leurs caractéristiques sont néanmoins observees.

D’une fagon générale, le modele Tobit simple est spécifié sous la forme :

y; =x;'a+u; U, =Niid(0,5?)
yi siyi>0
(4.3)
Yi =
0 si vy <0

On suppose que la borne de censure ¢ =0, ce qui implique que si le vecteur X; contient un terme
constant, celui-ci se confond au seuil.

3. Vraisemblance du modeéle Tobit et méthodes d’estimation

Pour estimer le modéle Tobit, la méthode utilisée est celle du maximum de vraisemblance. Pour
écrire la fonction de vraisemblance du modéle, il faut remarquer que la distribution de la

variable dépendante Y; est un mélange d’une variable discréte et d’une variable continue
(normale). Si on désigne par ¢ et @ respectivement la densité et la fonction de répartition de
la loi normale standard, on a:

Pr(y, = 0) = Pr(y; <0) = Pr(u—‘ <X 3) - CD(— X 3) —1- CD(xi 3) (4.4)
(o) O

O O

Lorsque Y; >0, sa densité s’écrit :

f(y, 1y, >O):§¢((yi —Xia)/a)

Pr(y, >0)

(4.5)

La fonction de log-vraisemblance du modéle censuré s’écrit donc :
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| = ZLog (Pr(y; =0))+ > Log(Pr(y, > 0)f (y, /y; >0) = ZLogtl)(——j ZLog[ .—xia)/aj

y;=0 y;>0 0 y;>0

e (2 gl 2]

L'estimation par la méthode du maximum de vraisemblance consiste a maximiser la fonction 1.
On sait que cette technique fournit des estimateurs convergents et asymptotiquement efficaces.
On note que, contrairement au modeéle Probit, on peut identifier ici séparément les parametres
aeto.

3.1 Pourquoi les MCO ne sont pas appropriés ?

Que se passe-t-il si on ignore le probléme de censure ou de troncature et qu’on estime par MCO
le modéle Y; = X.@+U, sur I’échantillon des individus tels que Y; >07?

Estimer ce modéle par MCO revient en fait & supposer que E(Y;/X.,y, >0)=X.a. Si cette
condition n’est pas vérifiée, I’estimateur des MCO sera biaisé. En effet, on a :

- og(xalo)
E(u,/y, >0)= CD(xia/o) #0 4.7
o
E(y, /.y, >0)=xa+o = E(@,,)#0 (4.8)

{2
(On utilise le résultat : Si z ~ N(0,1) alorsE(z/z27") =—— #(7) et E(z/2<7)) = —9(z ))
(-7 D(z)

{%)
o{7)

Il'y adonc oubli de variable explicative lorsqu’on estime le modele par MCO ; la variable omise

est définie par :
X.a
{)
A=—2 (4.10)
q)( xiaJ
(o2

Cette variable est appelée « ratio inverse de Mills ».

Dans un modéle Tobit censuré, on a:

(4.9)

E(y,/x.,y,>0)=xa+o
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On peut montrer que 1’estimateur des MCO est biaisé en écrivant simplement les conditions de
premier ordre du maximum de vraisemblance.

6_| ZOSEZ(Yi —X;a)X = in%i (4.11)
8a y;=0

o} y;i>0
Cette condition s’écrit matriciellement :

1., :
;x (Y, = X,a)= X", 4, (4.12)

On en déduit que :

ayy = (X' Xl)ilx 1Y —o(X)) Xl)ilx 00 = 8 — (X Xl)ilx oo (4.13)
L’estimateur du MV est en général supérieur en valeur absolue a celui des MCO.
Ainsi, un modéle Tobit censuré estimé par MCO fournit des estimateurs biaisés non

convergents du fait de ’oubli d’une certaine variable explicative, appelée le ratio inverse de
Mills.

Que se passe-t-il si on estime par MCO le modéle y; = X;a+U; sur I’échantillon tout entier?

Cela suppose que E(Y; /x;)=X.a. Or, ici encore on a:

E(Yi /Xi') = Pr(Yi >O)'E(yi /yi >0) + Pr(yi :O)E(Yi /Yi =0) (4.14)
=d(x,alo)(x;a+ 0l )+(@1-D,).0=0(x,alc)(x, a+al) '

Les estimateurs obtenus seront biaisés et non-convergents.

3.2 Procédure d’estimation en deux étapes d’Heckman

Le développement précédent ne signifie pas qu’on ne peut pas utiliser les MCO pour estimer

un modele Tobit censuré. En effet, il suffit d’ajouter au modele "ce qui manque" et d’estimer le

modele par MCO pour avoir des estimateurs convergents. Le modele augmenté a estimer s’écrit
sous la forme :

Yy, =Xa+Ao+u, (4.15)

Tout le probléme revient a trouver un moyen de construire la variable 4 qui, manifestement,
dépend des parametres inconnus a et o.

Heckman (1976) propose une procédure d’estimation utilisant successivement les parties
qualitative et quantitative du modele. Les étapes de cette procédure sont décrites comme suit:

1- Estimer la probabilité de censure a 1’aide d’un Probit:

Pr(z, =1) =Pr(y, >0) =Probit(xa/o) (4.16)
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. : ~ . a
Cela fournit un estimateur convergent &' de a'= —.

O
2- Utiliser cet estimateur pour construire un estimateur convergent du ratio inverse de Mills :
A Xqa'
j = 202) (4.17)
O (x;a')

3- Estimer par MCO le modéle linéaire augmenté y, = x,a+ 4o +U, sur le sous-échantillon des
observations pour lesquelles Y; > 0.

Par construction, les résidus U; de cette régression sont hétéroscédastiques. En effet, sur ce sous-
échantillon, la variance des u; n'est pas égale a o, elle vaut :

var(u, /'y, >0)=var(u, /u, >—X a) =o-2(1—/?,;'Z +A xi'a) (4.18)

On utilise le résultat de la théorie des probabilités selon lequel : si z— N(0,o0) alors

var(z/z<a) :02(1—12 —iij avec A = Halo)
o ®(al o)

On peut donc appliquer les MCO pondérés pour corriger 1’hétéroscédasticité des erreurs : aprés
avoir estimé o', on estime ensuite 4, on calcule la variance des erreurs et on pondére les

observations par JV ;).

4. Calcul des effets marginaux

Les effets marginaux dans un modele de régression correspondent a des prévisions sur une
variable continue lorsqu’une variable explicative donnée est modifiée. Dans un modéle Tobit,
il y a trois effets marginaux possibles selon la distribution de la variable considéree. En effet,
ona:

GE(Y: /%) _ a (4.19)
OX,
N L) SN (4.20)
0 o

k

En effet, on montre que E(y, /x;) = q)(ﬁ)(xia + aﬂ,,) (voir Greene (1997) page 910).
O

OE(y, /%,y >0)
aXk
Eneffet: E(y,/X,y, >0)=xa+0c4.

=a fl-xa4 - 2] (4.21)
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5. Test d’hétéroscédasticité

La présence d'hétéroscédasticité implique la non-convergence de I'estimateur du maximum de
vraisemblance (Gourieroux, 1989, p.210). Il faut donc prendre en compte I'nétéroscédasticité
quand elle est présente, lors de I'estimation. Une fagon de tester 1’hétéroscedasticité est de
specifier une relation scédastique sous la forme :

o, = op exp(z;7) (4.22)

ou Z;est un vecteur de g variables responsables de I’hétéroscedasticité. En pratique, on prend

souvent certaines variables explicatives. L’hypothése nulle d’homoscédasticité est équivalente
a:

Ho:y =0 (4.23)
Cette hypothése peut étre testée a 1’aide de la statistique du ratio de vraisemblance:

LR==2(l,—1 )=y2(g) (4.24)

oul, est la log-vraisemblance sous I’hypothése d’homoscédasticité et | la log-vraisemblance
sous I’hypothese d’hétéroscédasticité.

On peut également utiliser le test du multiplicateur de Lagrange. Si I'on évalue la matrice G(a,
b) de dimension (n, k+g) contenant les dérivées de la fonction de log-vraisemblance pour
chaque observation, le terme général de cette matrice est donné par :

AL B (4.25)
30,

avec 6=(a,b) un vecteur de k+g éléments.

La statistique de test est definie par :

LM =¢', G(8)[G(a) G(8)] 'G(a)'e, (4.26)
ou &n=(1,1,...,1)".
On utilise un résultat beaucoup plus simple:
LM =nR? — #*(9) (4.27)

ou R? est le coefficient de determination de la régression du vecteur e, = (11,...,1)" sur la
matrice G, évaluée sous I'hypothése d'homoscédasticité.

Sous I'hypothése d'une hétéroscédasticité multiplicative de la formes” =2 exp(zy), le
gradient de la fonction log-vraisemblance donne les équations ci-apres:
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A Sl fo2 -1k ) o2] (4.28)
oa ‘I

A _ Sk w2102 ~1]1202 + @-k)axal 207 (4.29)
aGo i=1
s_' =Y ok, [ 1ot ~1) 1207 + (1K, )4 xal 207 (4.30)
Voo

6. Modele Tobit généralisé (Tobit avec sélection)

Dans le modéle Tobit simple (Tobit 1), les deux parties du modéle (qualitative et quantitative)
sont modélisées simultanément. Dans I'exemple de l'achat du bien, l'individu décide
simultanément du fait qu'il va ou non consommer le bien et de la dépense qu'il va affecter a
I'achat du bien. En fait, ce modéle ne modélise pas explicitement la partie qualitative, c'est-a-
dire la décision d'acheter ou non le bien. Autrement dit, le modele Tobit simple suppose que les
déterminants de la décision d'acheter le bien et la somme dépensée sont les mémes. Un modele
alternatif, plus approprié a I'étude de nombreux phénomenes (offre de travail, dépenses de
transferts...), consiste a supposer un comportement séquentiel séparant les deux parties du
modele. Dans un premier temps, l'individu décide s'il va consommer ou non le bien. Cette

premiére décision peut étre modélisée par un modéle binaire basé sur une variable latente S; : si
sy>0 alors I'individu achéte le bien, sinon il ne I'achete pas.

Dans une seconde étape, il fixe la somme yi* qu'il va consacrer a I'achat du bien. La variable

observée Y, est alors définie par :

Y, = (431)

Cette spécification généralise le modéle Tobit simple qui correspond au cas particulier ou
yi =s;.

De facon générale, le modéle Tobit généralisé (Tobit de type I1) est un modéle dans lequel le
phénomene de censure est basé sur la valeur d’une variable s différente de la variable
dépendante. La structure du modéle Tobit Il est la suivante:

Yi* =X 'a+y;

S, =2, a+V,

(4.32)




La deuxiéme équations; = z', & +V, définit I’équation de sélection.

[uiijiid[O,[Gz ”D (4.33)
V; po 1

ou p représente le coefficient de corrélation entre U, et V;. La formulation Tobit Il permet donc
de faire apparaitre la plus ou moins grande corrélation existant entre les deux décisions. La
restriction que la variance de V;est égale a 1 est imposee parce que seul le signe de Si* sera

On suppose que :

observé. De fait, les variables réellement observées sont Y; et S;. x et z sont des vecteurs de

variables explicatives de dimensions K, et K, respectivement. Certaines variables explicatives

peuvent étre communes a x et z, mais a priori rien n'impose que ces variables soient les mémes.
En effet, une variable peut tres bien expliquer les dépenses de consommation d’un bien sans
pour autant étre déterminante dans la décision d'achat du bien.

On montre que:

* ! ¢(Z|b)
E(yi/s; >0)—Xia+p0—®(zib) (4.34)

On peut appliquer la procédure d’estimation en deux étapes d’Heckman. Dans une premiére
étape, on modélise par un Probit ordinaire la partie qualitative du modeéle:

S, = (4.35)

L'estimation Probit de ce modéle permet d'obtenir un estimateur convergent @ des paramétres
de I’équation de sélection Pr(s, =1) = Probit(z,2).

¢(z,2)
d(z,a)
augmenté y, = X, a+9ﬁ1 +¢& est estimé par MCO a I’aide des observations pour lesquelles
s =L.

Dans une seconde étape, le regresseur de sélection 4, = est évalué en ¢ et le modéle

On obtient des estimateurs asymptotiqguement sans biais de a et o0 . Mais ces estimateurs ne
sont pas asymptotiquement efficaces, car les résidus de la régression sont hétéroscédastiques
par construction. En effet, on a:

V(g ) =0%—(po)?|z, ar + 2] (4.36)
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Ainsi, pour obtenir une inférence paramétrique correcte, il est nécessaire de corriger cette
hétéroscédasticité par la méthode des moindres carrés pondérés. Pour obtenir une estimation de
o, on considere les résidus de la derniere régression:

é‘i = y —XI.

a-o04 (4.37)
Puisque :

o2 =V (& ) +(po)?|z, a.h, + 2] (4.38)

On obtient un estimateur convergent de ¢ donné par :
A2 1 ~2 éz VAR 432

GP==D & +—D (7 aA + A7) (4.39)
n n

1 s5=1 1 s=1

ou Ny représente I'effectif des observations pour lesquelles s, =1.

Cette méthode d'estimation en deux étapes fournit aussi bien un test pour la sélection
d’échantillon qu’une technique d’estimation. Le coefficient du regresseur de sélection est égal

apo . Puisque o # Qalors on peut utiliser un test de Wald pour tester I’hypothése que p =0.

Sous cette hypothese, la statistique de test suit asymptotiquement une loi du Khi-deux a un
degré de liberté. Si I’hypothése n’est pas rejetée, on peut conclure que la sélection n’introduit
pas de biais dans 1’estimation par la méthode des MCO.

7. Modele a régime

On suppose ici que I’échantillon peut étre scindé en deux sous-echantillons suivant un critére
donné. Par exemple, marié/non mariés, utilise ou n’utilise pas une méthode contraceptive, etc.

On considére la variable de régime R, =1si ’individu i satisfait le critére (régime 1), 0 sinon

(régime 2). La variable latente associée & R, est notéeR; .

On cherche & modéliser une variable dépendante Y sachant que celle-ci est expliquée de fagon
différente selon le régime :

Vi =X;@ +U;  Si R =1 R =Za+v,
(4.40)
Yo = X8, +Uy S R, =0 R; =1{Z.a+vi>0}
Les caractéristiques explicatives x, et x, ne sont pas nécessairement les mémes, elles peuvent

étre communes ou bien différentes selon le régime. Par exemple, si on considere le régime
relatif a ’utilisation d’une méthode contraceptive, on peut prendre en compte les variables telles
que la source d’information sur cette méthode, la fréquence d’utilisation, pour les individus
utilisant la méthode (régime 1).
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On pose que Uy;,U, et V; suivent une loi normale trivariée avec :

- EW)=o @4
- E(p)=o; (4.42)
- E(V4)=02=1 (4.43)
- E(uuy,) =0, (4.44)
- corr(uy,v,) = py, (4.45)
- corr(uy,V,) = o, (4.46)

Sous ces hypotheses, on établit que :

E(y; /R =1) =xa + p,0, g;((ZZuZ)) (4.47)
_ _ #(z,a)
Yai = X518, = 05,0, (l—(I)(Zia)+62i (4.48)

On peut utiliser une procédure d’estimation en deux étapes a la Heckman :

- On estime & I’aide d’un Probit I’équation de régime Pr(R; =1) = Probit(z,) . On obtient un
: - : i PZQ)
estimateur convergent de «, a partir duquel on estime les regresseurs de sélection )
a
1
¢(z,2)

(-0(za))
#(24)
d(z,a)

+ &5, sous les hypotheses habituelles du modele linéaire

- On estime séparément, par MCO, les modeles Y, =X, + 0,0,

#(2,2)
L-(z,4))

+&; et

Yoi =Xp8; — 05,0,.

multiple.
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Chapitre 5

Modéles de Comptage

1. Introduction

Le but de ce chapitre est de trouver le ou les modeles appropriés pour analyser une variable de
comptage. Une variable Y est dite de comptage si elle désigne le nombre de fois qu’un
événement survient.

Ces variables sont la résultante de certains phénomenes prenant des petits nombres de valeurs
discretes positives, mais non catégorielles, comme par exemple le nombre d’accidents, le
nombre d’enfants, le nombre d’années d’étude, le nombre d’arrivée journaliére a une gare, le
nombre de fois ou un individu change d’emploi.

Pour expliquer comment les réalisations de telles variables dépendent d’autres variables
quantitatives ou qualitatives, le modéle linéaire classique se révéle inadéquat pour les mémes
raisons que dans le modeéle dichotomique :

1) le nuage des observations n’a pas une forme adaptée a un ajustement linéaire ;

2) T’hypothése de normalité ne peut étre plausible puisque la variable endogéne prend des
valeurs discretes avec des probabilités non nulles ;

3) les prévisions de la variable dépendante donnent des valeurs que ne peut prendre y.

La formulation la plus courante consiste a supposer que les réalisations de la variable sont issues
d’une loi de Poisson, dont le paramétre dépend des valeurs prises par des variables exogenes.

2. Distribution de Poisson

Soit y une variable aléatoire indiquant le nombre de fois un événement s’est produit durant un

intervalle de temps. On dit que y a une distribution de Poisson de parametre A > 0si :
k

A
Prob(y=k)=e™ m (5.1)

Le parametre A est appelé taux d’incidence et on a :

E(y) =4 =Var(y) (5.2)
L’¢égalité de la moyenne et la variance est qualité d’équidispersion. En pratique, les variables
de comptage ont souvent une variance plus grande que la moyenne, ce qui est qualifié de

surdispersion. Le développement des modéles de comptage essaie de prendre en compte cette
surdispersion.
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Une autre hypothese du modele de Poisson est que les événements sont indépendants. Cela
signifie que quand un événement se produit, il n’affecte pas la probabilité de réalisation de
I’événement dans le futur. Par exemple, considérons le nombre de visites chez un médecin.
L’hypothese d’indépendance implique que quand un individu visite un médecin, son taux de
visite ne change pas. Les visites passées n’affectent pas les visites futures. De méme, si on
considére le nombre d’enfants nés durant une période, I’hypothése d’indépendance implique
que le fait d’avoir des enfants n’affecte pas le taux de naissance.

L’une des explications de I’échec de la distribution de Poisson a ajuster correctement les
données empiriques est que le paramétre A différe selon les individus. On qualifie cette
situation d’hétérogénéité entre les individus. L’hétérogénéité dans les caractéristiques des
individus est la cause de la surdispersion dans la distribution marginale de la variable.

3. Le modele de régression de Poisson

3.1 Présentation du modéle

SoitY, une variable de comptage a valeur dans N. la probabilité que Y, =K , avec k e {01,..},
est donnée par:

ﬂ,k
Pr(y,=k)=e™ ?I' (5.3)
ol 4 est le paramétre de distribution tel que E(Y,) =V (Y,) =4.. Pour introduire des variables

explicatives X; "= (X;,.--, X, ), on pose la relation suivante :
[
A =exp(x', ,B):exp(zxi,ﬂj] ou log(4)=x; B (5.4)
j=1

Le choix de la forme fonctionnelle liant le parametre aux exogenes s’explique essentiellement
par la nécessité d’avoir des 4, positifs. En effet, une spécification 4, = X'; B conduirait a une des

A négatif. De plus, lorsque les variables explicatives sont prises en log, les coefficients
s’interpretent comme des élasticités :

_0Olog E(y,)
bi= dlog x,, (53)
La probabilité conditionnelle de Y;s’écrit :
a0 A (%)
Prly = yi) =e " 20T = el 4 04) + vy log(4,(x)) - log(yi)] (5.6)

La log-vraisemblance du modele de Poisson est :
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og L= (exp(x, £)+ ;X f—log( 1)) 5.7)

i=1
Le vecteur de parameétres B s’obtient par maximisation de cette fonction :

/3 = ArgMax log L (5.8)
]

3.2 Interprétation

Les outils d’interprétation d’un modeéle de comptage different selon que 1’on désire connaitre
la valeur espérée ou la distribution de la variable.

3.3 Effet marginal sur la moyenne conditionnelle

La valeur espérée de y conditionnellement aux variables explicatives est :
[
E(y):eXp(X'ﬂ):eXp[ijﬂj] (5-9)
=

L’effet marginal d’une variable explicative X;sur la valeur espérée de y est :

EVDI_ 5 ep(x ) = BEY 1) (510

J
L’effet marginal dépend de X ; mais aussi de toutes les autres variables.

On peut calculer I’effet sur la moyenne en termes relatifs ou de pourcentage. Pour une variation
absolue de x; ded (X;passe de x;a X +&5),0na:
E(y/x X; =X +5)
E(y/x X; =X;)

= exp(/3,) (5.11)
Si toutes les variables autres que X ; sont maintenues constantes, alors toute variation d’une unité
de xj (0 =1) entraine une variation de la valeur espérée de exp(ﬂj) .

Alternativement, on peut exprimer cette variation en pourcentage :

E(y/x x; =X;+5)—E(y/x,X; = X))
E(y/x x; =X])

x100 =100 [exp(8,5) 1] (5.12)

Enfin, on peut calculer le changement suite a un changement discret dans la variable x;, par
exemple xj passe d’une valeur x.a une valeur X :
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A _AE(y/X)

j =E(y/ X X; =Xz) —E(Y/X,X; =X;) (5.13)

X

Ainsi, pour un changement de xj de x_aXs , la valeur espérée change de A ;, toutes choses étant
égales par ailleurs. Les cas les plus courants ou un changement discret a lieu sont obtenus en
faisant varier x; de :

- savaleur minimum a sa valeur maximum ;
- 04a1 (pour une variable binaire).

3.4 Probabilités prédites

Connaissant X';on peut calculer la probabilité que Y;prenne n’importe quelle valeur de son
ensemble de définition :

Py, =k ) = 2PXL D) eXp(-exp(x, )

x (5.14)

Cette probabilité est calculée pour chaque observation et pour chaque valeur de k. La probabilité
prédite moyenne permet, pour chaque valeur de k, de résumer le pourvoir prédictif du modele.
Elle est donnée par :

Pr(y =k) :%Zn:Pr(yi =k/x,) (5.15)

3.5 Prise en compte du temps d’exposition

Dans ce qui précede, nous n’avons pris en compte le temps d’exposition des individus a
I’événement d’intérét. Rappelons que les Y;sont indépendantes et que 4, = E(Y; /X', ) dans une
unité d’intervalle de temps.

Désignons par t; la durée de temps d’exposition de ’individu a I’événement. Au bout du temps

t;, le nombre d’événements espéré est :

# =t x4 =ep(in(t) + X, ﬂ):eXp(Z'i B) (5.16)

On peut donc intégrer le tempst; dans la régression a ’aide de la variable In(t;)dont le
coefficient est forcé égal a 1.

4. Modéle binomial négatif
4.1 Spécification

Le modele de Poisson impose que 1’espérance conditionnelle est égale a la variance
conditionnelle. Cette hypothese est parfois peu réaliste. Le probleme souvent rencontreé est celui
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de la surdispersion: V(Y;/%)>E(Y;/X). Ce probléme provient de 1’hétérogénéité non
observable.

Dans le modele de Poisson, la moyenne conditionnelle dey sachantxest connue :
A =exp(x' B). Dans le modele binomial négatif (Modele NegBin : Negative Binomial Model),
la moyenne conditionnelle est une variable aléatoire :

A =exp(x, f+e) (5.17)

ou €;est un terme d’erreur aléatoire supposé non-correlé avec X;. Dans le modéle de Poisson,
les variations de/; résultent de I’hétérogénéité observée entre les individus. A différentes

valeurs de X; sont associées différentes valeurs de A et tous les individus ayant les mémes
caractéristiques observables xont la méme valeur de 4. Dans le modéle binomial négatif, les
variations de 4. sont dues a la fois aux variations de X; et a I’hétérogénéité non observable captée

par la variable €;. Pour des valeurs données de X;, il existe une distribution de valeurs de 4. plutdt
qu’une seule valeur.

La relation entre les moyennes conditionnelles du modele de Poisson et du modéle binomial
négatif est donnée par la relation suivante:

& =exp(X; B)exp(e) = 4 exp(e) = 46 (5.18)

Pour permettre que le modele ait la méme moyenne conditionnelle que le modéle de Poisson,
on pose que :

E(5)=1 (5.19)
La distribution conditionnelle des observations est toujours une loi de Poisson :

A ep(=AS)(46,)”

Pr(y=vy,/x)=e™" (5.20)
y;! y;!

Cependant, étant donné que le paramétre d; est inconnu, on ne peut pas calculer cette distribution
de probabilité. On impose une distribution de probabilité pour le paramétre d,. L’hypothése la
plus souvent faite est de supposer que o; suit une distribution Gamma de paramétreV; :

%

o S exp(=ov,), v >0 (5.21)

9(5) =

On montre que E(5,) =1 et Var(s,) =1/v;.

Sous ces hypotheses, la variance conditionnelle de Y, est définie par :
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Var(y, /) = z{1+ ﬁ] (5.22)
V.

Si I’expression de la moyenne conditionnelle permet d’identifier le paramétre 4, il se pose un
probléme d’identification pour la valeur de vi. Si ce paramétre varie suivant 1’individu, alors il
y aura plus de paramétres que d’observations. L’hypothése souvent faite est de supposer que le

paramétre v, est constant :

D (5.23)
a

Cette hypotheése implique que la variance de oi est constante. Le coefficient a est appelé
parametre de dispersion car la variance conditionnelle de y croit avec o.

4.2 Estimation

Le modeéle binomial négatif peut étre estimé par la méthode du maximum de vraisemblance. La
fonction de vraisemblance du modeéle est la suivante :

L1y, =] [Priy =y,/%) =f[r§¥;1j‘y!)(a?+ AJ [a”" J (5.24)

ou; =exp(x; ).
4.3 Test de I’hypothése de surdispersion

Il est important de tester I’hypothése de surdispersion lorsqu’on utilise le modele de Poisson
afin de vérifier si I’hypothése sous-jacente au modéle est vérifiée. La specification de Poisson

peut étre facilement testée a travers I’hypothése H, : @ = 0. Sous I’hypothése nulle, le modéle

binomial négatif se réduit au modele de Poisson. On peut utiliser un z-test unilatéral pour tester
la significativité de «. On peut aussi utiliser la statistique du rapport de vraisemblance définie
par :

LR = 2(log Lygy —log Lyyp )= 7°() (5.25)

ou Lmen est la vraisemblance du modéle binomial négatif et Lmvp la vraisemblance du modele
de Poisson.
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