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Chapitre 1 

 
En guise d’Introduction  

 
 
 

1. Position du problème 

 

L’analyse des comportements individuels ne repose pas toujours sur des variables continues 

comme le revenu, la consommation, l'investissement…; elle peut aussi porter sur des 

phénomènes à caractère qualitatif comme, par exemple, le fait de consommer un certain bien, 

le fait d’adhérer à une union syndicale ou à une association, le moyen de transport utilisé, le fait 

de choisir une filière de formation parmi un ensemble, le fait d'exercer une certaine activité 

professionnelle. Dans ces cas, la variable explicative Y ne peut prendre qu’un nombre limité de 

modalités. Il a été démontré que dans un tel cadre, l’économétrie classique (notamment la 

méthode des MCO) produit des résultats biaisés et non-convergents. En lieu et place de 

l’application des méthodes de l’économétrie classique, plusieurs modèles ont été développés 

selon la nature de la variable ou du phénomène à analyser. C’est à cette fin que répond 

l’économétrie des variables qualitatives et des variables à domaine de définition limitée. Dans 

toute la suite, nous utiliserons l’appellation anglaise CLDV (Categorial and Limited Dependent 

Variable) pour désigner l’économétrie des variables qualitatives et des variables à domaine de 

définition limitée. 

 

Il existe quatre grands groupes de modèles définis selon la nature des variables à analyser qui 

rentrent dans la cadre des CLDV : les modèles binaires ou dichotomiques, les modèles 

multinomiaux, les modèles de comptage, les modèles censurés ou tronqués. 

 

Les modèles binaires ou dichotomiques sont élaborés pour les cas où la variable dépendante à 

analyser Y est susceptible de prendre deux valeurs (0 ou 1), permettant ainsi de rendre compte 

de l’occurrence ou non d’un événement. 

 

Les modèles multinomiaux sont une généralisation des modèles dichotomiques aux cas où la 

variable dépendante à analyser Y est susceptible de prendre plus de deux valeurs. C’est le cas 

par exemple, du statut matrimonial, des avis donnés lors d’une enquête de satisfaction sur une 

échelle de plus de deux modalités (1=très satisfait, 2=satisfait, 3=pas satisfait, 4=pas du tout 

satisfait). Il existe une gamme de modèles multinomiaux selon que la variable est ordonnée, 

non ordonnée ou séquentielle. 

 

Les modèles de comptage, quant à eux, sont élaborés pour la modélisation des variables prenant 

un nombre très limité de modalités positives et traduisant le plus souvent un phénomène de 

comptage. Par exemple, le nombre d’appel entre 12 heures et 13 heures à un poste de police, le 

nombre passagers à une gare de bus entre 12 heures et 14 heures. 

 

Les modèles censurés et tronqués sont adaptés au cas de variables d’intérêt « coincés » entre 

deux valeurs ou présentant soit une contrainte de supériorité soit une contrainte d’infériorité. 

 

Dans chacun des modèles ci-dessus énumérés, on veut expliquer les réalisations du phénomène 

observé. A cet effet, on entend croiser les réalisations de la variable Y avec celles d’un certain 
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nombre de variables explicatives X1,…,Xk dont les réalisations peuvent être indifféremment de 

natures qualitative ou quantitative. 

 

Les modèles à variables qualitatives sont de plus en plus utilisés parmi l'éventail des outils 

d'inférence statistique. Leurs applications se révèlent fort diverses, des études épidémiologiques 

aux études de marché du travail et d'allocation du temps, en passant par le marché du crédit. 

Dans les modèles à variable dépendante limitée, la méthode traditionnelle des Moindres Carrés 

Ordinaires ne semble plus adaptée car elle doit tenir compte de l’absence de continuité de la 

variable endogène et souvent de l’absence d’un ordre naturel entre les modalités de cette 

variable.  

 

2. Pourquoi les MCO ne sont-ils pas appropriés? 

 

Pour illustrer le fait que les variables catégorielles « violent » les hypothèses des MCO et ne 

peuvent pas se prêter à cette méthodologie; nous allons utiliser le modèle binaire ou 

dichotomique. On considère une variable dichotomique y à deux modalités 0 et 1, et x un vecteur 

de k+1 variables explicatives. On cherche à expliquer la réalisation de l'évènement y=1 par les 

variables de x. ix' est le vecteur (1, k+1) des caractéristiques de l'individu i. Le modèle linéaire 

classique s’écrit : 

iii eaxy += '                                                            (1) 

 

Plusieurs éléments rendent inappropriée l’estimation de ce modèle par la méthode des MCO : 

 

1) Les deux membres du modèle sont de nature différente : iy est qualitative et ii eax +' est 

quantitative continue. 

 

2)  Une représentation graphique des points montre que l’approximation linéaire n’est pas 

adaptée. 

 
 

Le nuage de points se trouve sur deux droites parallèles. On voit mal comment on peut faire 

passer une seule droite d’ajustement par ces points.  

 

3) Les erreurs du modèle prennent deux valeurs :  
 

- axe ii '1−=  quand 1=iy avec une probabilité axy ii ')1Pr( == . 

 

- axe ii '=  quand 0=iy  avec une probabilité axy ii '1)0Pr( −== .  
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Par conséquent, les erreurs ne peuvent être continues, à fortiori suivent une loi de distribution 

normale. Le non-respect de l’hypothèse de normalité ne permet pas d’utiliser les statistiques 

usuelles de test (Student, Fisher, Chi-deux). 

 

4) La variable dépendante iy suit une loi binomiale de paramètre ax i' . Le terme d’erreur ie est 

aussi une binomiale et )'1(')( axaxeVar iii −=  : les erreurs sont hétéroscédastiques par 

construction et les estimateurs par MCO ne sont pas efficaces. La variance dépend des 

variables explicatives. Cependant, cet inconvénient est mineur puisqu’on peut utiliser les 

moindres carrés pondérés pour résoudre ce problème économétrique. Après avoir estimé le 

modèle par MCO, on tire )ˆ1(ˆˆ 2

iii yy −=  comme estimateur de 2)( iieVar = . Ensuite, on 

applique les moindres carrés pondérés, c'est-à-dire les MCO au modèle linéaire obtenu en 

divisant les observations par i̂ . 

 

5) On a par nature  1;0iy . Or, rien n’impose que les prédictions iŷ  appartiennent à 

l’intervalle [0 1]. Même si on estime sous les contraintes 10  axi , rien ne garantit que 

ces contraintes soient compatibles entre elles. Le risque d’avoir des probabilités calculées 

négatives est présent. Il se peut ainsi que 
2

ˆ
i  soit négative! 

 

3. Principe d’estimation des CLDV 

 

La méthode d'estimation de choix des CLDV est la Méthode du Maximum de Vraisemblance. 

Avant toute chose, il convient de bien identifier la fonction de répartition de Y ou sa fonction 

de densité. Cependant, compte tenu de la nature qualitative des variables, on a recours à des 

hypothèses sur la distribution des erreurs en utilisant une approche par les variables latentes. 

Soit f la fonction de densité retenue. Considérons un échantillon de taille n. On construit la 

fonction de vraisemblance comme suit :  

 

𝐿(𝛽) = ∏ 𝑓(𝑦𝑖|𝑋𝑖)
𝑛
𝑖=1                                                        (2) 

 

où 𝛽 est le vecteur des paramètres à estimer. 

 

La détermination des paramètres 𝛽 se fait par la maximation du logarithme de la vraisemblance, 

c'est-à-dire la résolution du programme : 

 

𝑀𝑎𝑥
𝛽

log⁡(𝐿(𝛽))⁡                                                         (3) 

 

Pour résoudre cette équation, on utilise les algorithmes du calcul numérique. A cet effet, 

plusieurs algorithmes basés sur le principe itératif sont disponibles. Le principe est le suivant : 

- On part d’une valeur 𝛽̂0 ; 

- On détermine 𝛽̂1 tel que 𝛽̂1 = 𝛽̂0 + 𝜀0, 𝜀0 est un incrément ; 

- On vérifie si ‖𝛽̂𝑀𝑉 − 𝛽′‖ < 𝜀 pour 𝜀⁡ aussi petit que l’on veut ; 

- Si c’est le cas, on s’arrête et l’estimateur est 𝛽̂1 ; 

- Sinon, on continue le processus jusqu’à avoir ‖𝛽̂𝑀𝑉 − 𝛽′‖ < 𝜀 pour 𝜀⁡ petit ; 

 

Toute la différence au niveau des méthodes de résolution diffèrent au niveau du choix de 𝜀0. 

Quatre algorithmes sont le plus souvent utilisés : 
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1. La méthode Steepest Ascent : 

 

 𝜀𝑚 =
𝜕𝐿(𝛽̂𝑚)

𝜕𝛽
⁡ , 𝛽̂𝑚+1 = 𝛽̂𝑚 + 𝜀𝑚                                       (4) 

 

2. La méthode de Newton-Raphson : 

 

 𝜀𝑚 = [
𝜕2𝐿(𝛽)

𝜕𝛽𝜕𝛽′
]
𝛽=𝛽̂𝑚

−1

×
𝜕𝐿(𝛽̂𝑚)

𝜕𝛽
 ,   𝛽̂𝑚+1 = 𝛽̂𝑚 − 𝜀𝑚                     (5) 

 

3. La méthode de Scoring : 

 

 𝜀𝑚 = [
𝜕2𝐿(𝛽)

𝜕𝛽𝜕𝛽′
]
𝛽=𝛽̂𝑚

−1

×
𝜕𝐿(𝛽̂𝑚)

𝜕𝛽
 ,  𝛽̂𝑚+1 = 𝛽̂𝑚 + 𝜀𝑚                          (6) 

 

4. La méthode de Bernd-Hall-Hall-Hausman (BHHH) : 

 

   𝜀𝑚 = [∑ {
𝜕𝐿𝑖

𝜕𝛽̂𝑚
}𝑛

𝑖=1 × {
𝜕𝐿𝑖

𝜕𝛽̂𝑚
}
′

]
−1

 ,  𝛽̂𝑚+1 = 𝛽̂𝑚 + 𝜀𝑚                        (7) 

 

 

4. Démarche générale d’analyse des modèles CLDV 

 

De façon pratique, pour s’assurer que le maximum de vraisemblance fonctionne, il faut : 

 

- 10 observations au moins par paramètre estimé sans toutefois oublier qu’il est conseillé 

d’atteindre au moins un échantillon de taille 100 ; 

 

- Eviter la multicolinéarité entre les variables explicatives : on doit avoir une 

indépendance linéaire des colonnes de X ; 

 

- Avoir à l’esprit le principe « GIGO » : Garbage In, Garbage Out 

 

- Des modèles comme Poisson, Binomial Négatif, ZIP (Zero Inflated Poisson), ZINB 

(Zero Inflated Binomial) sont gourmands en observations. 

 

L’analyse des modèles CLDV procède suivant les étapes ci-après: 

 

1. Estimer le modèle à l’aide du MV. 

2. Test d’hypothèse à l’aide des tests tels que Wald, rapport de vraisemblance, 

multiplicateur de Lagrange, etc. 

3. Mesurer l’adéquation du modèle aux données à l’aide des critères d’information (AIC, 

BIC, Schwartz) et de certains tests tel que celui de Hosmer et Lemeshow. 

4. Interprétation du modèle à l’aide des probabilités prédites, des odds ratios, etc. 

 

Le schéma suivant donne une démarche générale à suivre lors d’une régression logistique. 

Cette démarche peut être appliquée à toute autre type de régression. 

  
ESTIMATION 

 

 

 

 

DIAGNOSTIC 

-RESDUS DE 

EXPLICATIONS 

RETRAITS 
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Chapitre 2 

 

Modèles dichotomiques Probit et Logit 
 

 
1. Introduction  
 

Ce chapitre présente les modèles destinés à l’analyse des phénomènes binaires. Dans ces 

modèles, la variable dépendante Y prend deux valeurs (0 ou 1) indiquant l’occurrence ou non 

d’un événement. On parle ainsi des modèles dichotomiques ou binaires. On veut expliquer 

pourquoi cet événement se produit (ou, au contraire, ne se produit pas). A cet effet, on entend 

croiser les réalisations de la variable binaire Y avec celles d’un certain nombre de variables 

explicatives X1, X2…, Xk dont les réalisations peuvent être indifféremment de natures 

qualitative ou quantitative. 

 

Le chapitre introductif a montré que pour ce type de variables, la méthode traditionnelle des 

Moindres Carrées Ordinaires n’est pas adaptée car elle doit tenir compte de l’absence de 

continuité de la variable dépendante et souvent de l’absence d’un ordre naturel dans les 

modalités de cette variable. Afin de pallier cette limite, en général, on a recours à deux types de 

modèles selon l’hypothèse faite sur la distribution des termes d’erreurs : le modèle Logit et le 

modèle Probit.  

 

Ce chapitre présente les intuitions et les développements théoriques permettant de formaliser et 

mieux interpréter les modèles dichotomiques. Un aperçu des domaines d’application de ces 

modèles est également présenté. 
 

2. Quelques domaines d'application 

 

Il existe de nombreux domaines d'application des modèles dichotomiques. Ces modèles peuvent 

être utilisés à titre explicatif, pour rechercher les déterminants d'un phénomène donné, ou à titre 

prévisionnel, pour prédire un phénomène pour des cas nouveaux. Voici quelques domaines 

d'application intéressants de ces modèles. 

 

a) Anthropométrie 

 

On dispose de données anthropométriques relatives à un échantillon de crânes d’hommes et de 

crânes de femmes. On cherche à savoir quels sont les déterminants des crânes d'hommes et à 

déterminer le sexe (inconnu) d’un individu dont on a retrouvé le crâne lors de fouilles 

archéologiques. On s'intéresse donc à la probabilité que le crâne soit du sexe masculin. 

 

b) Médecine 

 

On dispose de mesures cliniques, biologiques... caractérisant des malades atteints de la même 

maladie. Après avoir observé l’évolution de ces patients sur une période, on cherche les 

déterminants qui expliqueraient la survie des malades. On peut ainsi prévoir le diagnostic final 

pour un nouveau malade atteint de la même maladie au vu de ses caractéristiques biologiques. 
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c) Finance et banque 

 

Les banques sont intéressées à prévoir le comportement des demandeurs de crédits, en fonction 

de leurs caractéristiques qui doivent discriminer entre les « bons clients » et les « mauvais 

clients». A partir d'une régression logistique, on chercher à savoir quelles sont les 

caractéristiques des clients qui expliquent leur comportement face au crédit (bon client/mauvais 

client). Des méthodes en analyse discriminante permettent également de résoudre ce genre de 

problème (Crédit Scoring). 

 
3. Notion de variable latente et modélisation des variables dichotomiques 

 

Pour pallier les insuffisances de la spécification linéaire, une approche classique consiste à 

considérer la variable endogène y comme étant la manifestation d’une variable « cachée » y* 

inobservable ; cette dernière étant reliée à un ensemble de variables explicatives X. Nous allons 

illustrer cette approche en considérons trois exemples. 

 

Le premier exemple et le plus célèbre est tiré de la biologie, celui de l’insecticide : on diffuse 

dans un espace clos un insecticide et l’on cherche à déterminer la dose minimale permettant de 

tuer les insectes. Pour cela, on observe au terme d’une période fixé les insectes morts pour 

lesquels on adopte le code 0=iy  et ceux encore vivants codés 1=iy . On suppose alors que 

chaque insecte dispose d’une capacité de résistance propre qui se traduit par un seuil 

inobservable de produit, noté *

iy , telle que si la dose de produit   est supérieure à ce seuil 

l’insecte meurt ( 0=iy ), il reste vivant (mais malade peut être) pour une dose  inférieure (

1=iy ). On cherche alors à modéliser la probabilité de survie de l’insecte i en fonction de la 

dose d’insecticide et des observations faites sur iy . Le problème peut s’écrire de la façon 

suivante : 

 








=




*

*

0

1

i

i

i
ysi

ysi
y                                                      (2.1) 

 

La tolérance *

iy peut s’écrire comme la somme d’une combinaison linéaire de caractéristiques 

propres à chaque insecte et d’un terme d’erreur. 

 

iii eaxy += '*                                                      (2.2) 

 

Un autre exemple, toujours tiré de la biologie, concerne la probabilité pour un mineur i  de ne 

pas contracter une maladie des poumons (événement codé 1=iy ). Le mineur contracte la 

maladie ( 0=iy ) lorsque sa tolérance inobservable, notée
*

iy , aux conditions de travail et en 

particulier aux poussières de charbon, est inférieure à certain seuil   inconnu. On suppose que 

la tolérance est liée à l’âge du mineur noté ix . De la même façon que précédemment, ce 

problème peut s’écrire sous la forme : 

 



 ++=

=
on

exysi
y iii

i
sin0

1 10

*  
                                   (2.3) 
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Le troisième exemple s'intéresse à la consommation d'un certain bien C (par exemple un poste 

radio avec lecteur CD). On définit la variable 1=iy  si l’individu i a acheté le bien C, 0=iy  

sinon. La variable « y= acheter le bien C» est celle qui est observée ; mais en réalité elle est le 

résultat d’un arbitrage en terme d’utilité. Si )1,( ixU  représente l’utilité que procure l'achat du 

bien C à l’individu i de caractéristiques ix  et )0,( ixU  l’utilité liée à la non consommation du 

bien, on peut poser que cxUxUy iii += )0,()1,(1 . La variable inobservée

)0,()1,(*

iii xUxUy −=  est la variable latente qui sous-tend l'achat du bien C. On a : 

 







+=
=

cysi

ceaxysi
y

i

iii

i *

*

0

'1
                                        (2.4) 

 

Dans cet exemple, nous avons assimilé la variable latente *

iy à une différence d’utilité. Mais 

cette variable inobservable peut représenter n’importe quelle grandeur économique susceptible 

d’affecter le comportement d’achat du bien C. 

 

Tout modèle dichotomique peut s’écrire sous la forme suivante : 

 








=

cysi

cysi
y

i

i

i *

*

0

1
                                                       (2.5) 

 

où la variable latente *

iy  inobservable est liée à un ensemble de caractéristiques observables ix  

et à une perturbation ie  : 

iii eaxy += '*                                                    (2.6) 

 

Les erreurs sont supposées i.i.d ( )2,0  . 

 

Si les *

iy étaient observables, on pouvait estimer directement le modèle (2.6) à l’aide des MCO, 

mais malheureusement ce n’est pas le cas. On peut cependant estimer la probabilité de 

réalisation de l’événement )1( =iy :  

 

)'Pr()Pr()1Pr( * axcecyy iiii −=== )'(1)'Pr(1 axcFaxce iii −−=−−=        (2.7) 

 

où F est la fonction de répartition des erreurs. On fait l’hypothèse que la distribution des erreurs 

est symétrique autour de sa moyenne : )()( xfxf −=  et )(1)( xFxF −−= . Dans ces conditions, 

on a : 
)'()/1Pr( caxFxy iii −==                                            (2.8) 

 

Remarque : La variable latente *y n’a pas toujours une interprétation économique claire, elle 

n’est qu’un artefact destiné à modéliser la réalisation de la variable observée. 
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4. Estimation du modèle 

 

L’estimation du modèle dichotomique se fait généralement par la méthode du maximum de 

vraisemblance. Pour cela, on écrit la vraisemblance de l’échantillon. Lorsque les observations 

individuelles iy , i=1,…,n, sont indépendantes, cette vraisemblance s’écrit comme le produit des 

probabilités. La méthode du maximum de vraisemblance consiste alors à trouver les valeurs des 

paramètres qui rendent l’observation des données la plus vraisemblable, c’est-à-dire à 

maximiser la fonction  de vraisemblance. Il s’agit en fait de chercher à faire dire au modèle la 

même chose que la nature. 

 

Si les observations sont indépendantes et identiquement distribuées, la probabilité jointe est le 

produit des probabilités associées à chaque observation : 

 

( ) ( ) i

i

y

i

yn

i

i axFaxFaxyL
−

=

−=
1

1

)'(1)'(),,(                                 (2.9) 

 

Cette fonction de vraisemblance peut aussi s’écrire : 

 

( )
=

=
n

i

ii axFaxyL
1

)(),,(                                           (2.10) 

avec  

1=i  si 1=iy  

1−=i  si 0=iy  

 

Les conditions de premier ordre de la maximisation de la fonction de log-vraisemblance 

s’écrivent: 

( )

0')'(
))'(1)('(

)'(

')'(
)'(1

1
1

)'(
)(

1

1

=








−

−

=








−
−−=




=





=

=

ii

n

i ii

ii

ii

n

i i

i

i

i

xaxf
axFaxF

axFy

xaxf
axF

y
axF

y

a

l
aS

                      (2.11) 

 

Pour résoudre cette équation, il faut expliciter la forme fonctionnelle de F. En pratique, deux 

lois de distribution sont utilisées: la loi logistique et la loi normale. 

 

 

4.1 Le modèle Logit 

 

On pose ici l’hypothèse que les erreurs ont une distribution logistique. La fonction de répartition 

s’écrit :  

 

)(
1

1

1
)( x

ee

e
xF

xx

x

=
+

=
+

=
−

                                          (2.12) 

 

Le modèle Logit impose la variance des erreurs égale à 3/2 . La fonction de log-vraisemblance 

prend la forme ( )
==

+−=
n

i

ax
i

n

i

i
ieyxal

1

'

1

1ln''  et les conditions de premier ordre donnent: 
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0'
1

1
)(

1
'

=














+
−=

=
− i

n

i
axi x

e
yaS

i

                                           (2.13) 

 

4.2 Le modèle Probit 

 

Dans le cas du modèle Probit, la fonction de répartition F est celle de la loi normale centrée 

réduite : 

)(
2

1
)( 22

1

xdttexF

x

==

−

−




                                    (2.14) 

 

Les conditions de premier ordre s'écrivent: 

 

( ) 0'
)1(

'
1

1
1)(

11

=








−

−
=









−
−−


=




= 

==

ii

n

i ii

ii
ii

n

i i

i

i

i x
y

xy
y

a

l
aS                  (2.15) 

 

Le système d’équations défini par les conditions du premier ordre est non-linéaire. On est 

contraint de rechercher une solution numérique (et non pas analytique) pour ce problème. Pour 

cela, on devra utiliser un algorithme d’optimisation numérique de la fonction de vraisemblance 

(voir Gouriéroux,(1989) page 20 pour les algorithmes de résolution).  

 

Remarques 1 : Problèmes d’identification 

 

L’estimation des modèles Logit / Probit pose deux problèmes : 

 

•  le seuil c  qui détermine la modalité 0 ou 1 ne peut être estimé indépendamment 

de la constante ; 

•  la variance   de l’erreur e  ne peut être estimée indépendamment des 

coefficients. 

 

Pb n° 1 : Le seuil ne peut être identifié  

 

))(Pr()'Pr()Pr()1Pr(
1

0

* 
=

−−=−===
k

j

ijjiiiii xaaceaxcecyy              (2.16) 

La constante 0a et le seuil c ne peuvent être dissociés → par la suite on fera « comme si » c = 

0. 

 

Pb n° 2 : La variance de l’erreur ne peut être identifiée  

 









=








−=−==



a
x

a
x

e
axexy ii

i

iiii ''Pr)'Pr()/1Pr(                        (2.17) 

 

→ Il est impossible de dissocier   de a . Les estimateurs des coefficients ne sont donc 

identifiés qu’à une constante multiplicative près ( )/1  . On peut faire «comme si» 

1= . 
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Remarque 2: Lorsqu’on est en présence de mesures répétées ou que les données présentent 

une « structure hiérarchique », comme c’est le cas lorsqu’on échantillonne des ménages et que 

l’on s’intéresse aux caractéristiques des membres de ces ménages, l’hypothèse d’indépendance 

des données n’est pas plausible. Dans ce cas, il faut utiliser d’autres méthodes qui prennent en 

compte la corrélation des données (ex : modèle marginal, modèle logistique conditionnel, 

modèle mixte). Les situations de mesures répétées sont plus fréquentes en biologie (expériences 

répétées) qu’en économie. 

 

5. Propriétés des estimateurs Logit et Probit 

 

Les estimateurs Logit et Probit obtenus par la méthode du maximum de vraisemblance 

possèdent les propriétés asymptotiques suivantes. 

 

a. L’estimateur â  converge en probabilité vers la vraie valeur a . Cela signifie que plus la 

taille de l'échantillon est grande, plus l’estimation tend vers la vraie valeur. 

 

aap =ˆlim                                                      (2.18) 

 

b. Il est asymptotiquement normalement distribué:  

 

))(,(ˆ 1−→ aIaNa                                               (2.19) 

 

où 































−=

'

log
)(

2

aa

L
EaI  est la matrice d'information de Fisher. On montre que : 

ii

n

i ii

i xx
axFaxF

axf
aI '

))'(1)('(

)'(
)(

1

2


=










−
=                                     (2.20) 

 

c. L’estimateur â  est asymptotiquement efficace: en grands échantillons, l'estimateur du 

maximum de vraisemblance utilise de façon optimale l'information contenue dans les 

données. 

 

 

6. Qualité d’ajustement du modèle  

 

Dans les modèles qualitatifs, plusieurs statistiques peuvent être utilisées pour juger de la qualité 

de l’ajustement. Les plus courantes sont le test du rapport de vraisemblance et le pseudo 2R de 

Mc-Fadden. 

 

6.1 Le test du rapport de vraisemblance (LR-test) 

 

Le test du rapport de vraisemblance consiste à comparer deux modèles, à savoir le modèle 

estimé avec la constante seule et le modèle estimé avec toutes les variables explicatives (qu’on 

appelle modèle saturé). C’est donc l’analogue du test de Fisher dans le cas des modèles estimés 

par maximum de vraisemblance. L’hypothèse nulle de ce test s’écrit : 

 

0...: 210 ==== kaaaH                                             (2.21) 
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Puisque le modèle sous H0  est emboîté dans le modèle saturé, la vraisemblance est augmente 

au fur et à mesure qu’on ajoute de nouvelles variables: un modèle explique mieux la réalité 

avec davantage de variables explicatives. La vraisemblance du modèle saturé est donc 

supérieure à celle du modèle contraint. Suivant la vraisemblance, on aura tendance à choisir le 

modèle contraint. Mais s’il se trouve que l’écart entre les deux vraisemblances est non 

significatif, alors on choisira le modèle contraint, car il explique aussi bien la réalité que le 

modèle saturé avec moins de variables. On le retient si on préfère les modèles parcimonieux.  

 

Le test du rapport de vraisemblance est donc basé sur l’écart entre les log-vraisemblances des 

deux modèles. La statistique du test est défini par : 

 

( )llLR o−−= 2                                                              (2.22) 

 

où ol est la log-vraisemblance du modèle estimé avec la constante seule comme variable 

explicative, c’est-à-dire sous l’hypothèse nulle ; l  est la log-vraisemblance du modèle saturé. 

 

Sous H0, on a : 

 )(2 kLR ⎯→⎯                                                      (2.23) 

 

On rappelle que k est le nombre de variables explicatives véritables sans la constante. Pour un 

niveau de confiance donné, on lit la valeur critique associée à la loi du khi-deux à k degrés de 

liberté
*2

 . Si 
*2

LR  alors on accepte l'hypothèse H0, c'est-à-dire les variables explicatives 

du modèle n'apportent pas grande chose dans l'explication du phénomène. Dans le cas contraire, 

on conclut que les variables sont globalement significatives, c'est-à-dire qu'il existe au moins 

une qui apporte une information significative dans l'interprétation du modèle. 

 

6.2 Les pseudo-
2R  

 

Plusieurs auteurs ont proposé des pseudo- 2R pour les modèles qualitatifs pour juger la qualité 

de l’ajustement du modèle aux données, avec l’idée d’en faire des équivalents du coefficient de 

détermination 2R du modèle linéaire classique. On les appelle des pseudo- 2R , car ils ne 

s’interprètent pas en termes de rapport de variances, comme dans le cas du modèle linéaire. 

Néanmoins, ils permettent d’évaluer le pouvoir prédictif du modèle. Une valeur proche de 1 

indique que le pouvoir prédictif du modèle est acceptable. 

 

a) Le 2R  de Mc-Fadden 

 

On le définit par : 

 
o

Mc
LogL

LogL
R −= 12

                                                        (2.24) 

 

Comme oLL  (la vraisemblance d’un modèle libre est toujours supérieure à celle du modèle 

contraint), alors  1,02 McR .  

 

Remarque : Sous EViews, le 2R de Mc-Fadden n’est pas calculé lorsque le modèle est spécifié 

sans constante. 
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b) Le 2R  de Cragg et Uhler 

 

On le définit par :  

nn

nn

CU
LL

LL
R

/2/2

0

/2

0

/1
2

)1( −

−
=                                                        (2.25) 

c) Le 2R  d’Efron 

 

Il est définit par :  





=

=

−

−

−=
n

i

i

n

i

ii

E

yy

yy

R

1

2

1

2

2

)(

)ˆ(

1                                                    (2.26) 

avec )ˆ'(ˆ axFy ii = . 

 

d) Le 2R  de Count 

 

Ce coefficient est définit par : 

=
j

jjCount n
n

R
12                                                  (2.27) 

 

où jjn  le nombre d’individus biens classés. 

 

e) Le 2R  de Count ajusté 

 

On le définit par : 

 

),max(

),max(

21

21

2

++

++

−

−

=



nnn

nnn

R
j

jj

AC                                                  (2.28) 

 

où +jn  est le nombre d’individus possédant la modalité j dans la base de départ. 

 

 

6.2 Test d ’adéquation de Hosmer Lemeshow 

 

Le test de Hosmer et Lemeshow teste  l’adéquation des probabilités calculées aux probabilités 

théoriques (inobservables) de l’événement 1=y . Il est basé sur un regroupement des 

probabilités prédites par le modèle en J groupes, déciles par exemple. On calcule, ensuite, pour 

chacun des groupes le nombre observé de réponses positives y = 1 et négatives y = 0, que l’on 

compare au nombre espéré prédit par le modèle. On calcule alors une distance entre les effectifs 

observés et les effectifs « espérés » au moyen d’une statistique du Chi-deux. Lorsque cette 

distance est petite on considère que le modèle est bien calibré 

 

Soit 
1

jn le nombre d’individus qui présentent effectivement la valeur 1=y  dans la classe j . 

Pour chaque classe j  on calcule la probabilité moyenne de 1=y , par : 
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


=
ji

ij

j

j p
n

p ˆ
1

                                                         (2.29) 

 

Si les probabilités sont correctement évaluées, la statistique de Hosmer et Lemeshow est définie 

par: 

 

( )

= −

−
=

J

j jjj

jjj

ppn

pnn
HL

1

2

)1(
 ~ )2(2 −J                                     (2.30) 

 

On doit noter que jj pn est l’espérance calculée du nombre d’individus présentant la modalité 

1=y  dans la classe j et que )1( jjj ppn − est la variance calculée de
1

jn . 

 

6.3 Indicateurs de « prédictions » correctes, spécificité et sensibilité 

 

On peut également juger de la qualité du modèle en évaluant son aptitude à reproduire les 

valeurs effectivement observées de Y sur l’échantillon qui a servi à l’estimation des 

coefficients. Pour cela, on doit convenir d’un seuil au-delà duquel la valeur calculée de *

iy se 

concrétiserait par une valeur prédite de iy  égale à 1. On peut, par exemple, convenir d’un seuil 

égal à 50 % (quoique ce seuil soit totalement arbitraire) et retenir la règle suivante : 

 

1ˆ =iy  si 5,0)ˆ'( axF i                                                  (2.31) 

 

Le choix d’un seuil égal à 0,5 a ses désavantages. En particulier, il attribuera le même résultat 

à deux individus ayant l’un une probabilité estimée de 0,45 et l’autre une probabilité de 0,001. 

Dans certains cas, on peut être amené à réviser ce seuil en fonction de l’évènement étudié (cas 

d'échantillons déséquilibrés ou des phénomènes rares par exemple). 

 

On peut construire une matrice de confusion indiquant les réalisations et les prédictions. 

 

 

Réalisation ( y ) 

Prédiction ( ŷ )  

Total 1 0 

1 
11n  10n  .1n  

0 
01n  00n  .0n  

Total 
1.n  0.n  n  

 

On définit ainsi le taux de prédictions correctes global )(TPC et le taux de prédictions correctes 

de chacun des événements ))0(),1(( TPCTPC . 

1000011 
+

=
n

nn
TPC                                                     (2.32) 

 

100)1(
.1

11 =
n

n
TPC                                                       (2.33) 

100)0(
.0

00 =
n

n
TPC                                                       (2.34) 
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En général, le taux global de prédictions correctes offre une mesure optimiste de la qualité 

prédictive du modèle. La sensibilité est définie comme la probabilité de bien classer un individu 

de la  catégorie y = 1, c’est-à-dire la probabilité de classer l’individu dans la catégorie y = 1 

étant donné qu’il est effectivement observé dans celle-ci : 

 

)1/1ˆPr( === yyéSensibilit                                          (2.35) 

 

La spécificité est définie comme la probabilité de bien classer un individu de la catégorie y = 0, 

c’est-à-dire la probabilité de classer l’individu dans la catégorie y = 0 étant donné qu’il est 

effectivement observé dans celle-ci : 

 

)0/0ˆPr( === yyéSpécificit                                        (2.36) 

 

Les taux )1(TPC et )0(TPC fournissent respectivement une estimation de la sensibilité et de la 

spécificité. 

 

Lorsque le seuil varie, le taux global de cas bien classés, la sensibilité et la spécificité changent, 

puisque le classement est modifié. Afin de représenter les valeurs pour toutes les possibilités de 

seuil, on dessine sur un graphique des courbes de sensibilité et de spécificité. 

 
 

En fixant un seuil *p , on obtient un classement avec une sensibilité et une spécificité égales à 
*p . 

 

Comme indicateur de la capacité du modèle à discriminer, on utilise la courbe ROC (Receiving 

Operating Curve) qui indique la sensibilité en fonction de la spécificité. La courbe ROC se 

présente comme ci-dessous : 

 

1 

Sensibilité/spécificité 

seuil 

Sensibilité 

Spécificité 

p* 

p* 



16 

 

 
La surface sous cette courbe permet d’évaluer la capacité du modèle à discriminer entre y=1 et 

y=0. 

ROC=0,5  → pas de discrimination 

0,7≤ROC<0,8 → discrimination acceptable 

0,8≤ROC<0,9 → très bonne discrimination 

0,9≤ROC → Discrimination exceptionnelle 

 

7. Détection des outliers et des observations influentes 

 

Une observation est dite outlier lorsqu’elle ne suit pas le mouvement général des autres 

observations de la série. La détection des outliers se fait via le résidu de Pearson défini par : 

 

)ˆ1(ˆ

ˆ

ii

ii
i

y
r





−

−
=                                                         (2.37) 

avec )ˆ,(ˆ axyP iii = . 

 

On peut aussi utiliser celui de Pearson standardisé qui est défini par : 

 

ii

istd

i
h

r
r

−
=

1
                                                        (2.38) 

avec 
')ˆvar()ˆ1(ˆ
iiiiii xaxh  −=  

 

Une observation sera déclarée outlier lorsque la valeur absolue de ces résidus est plus grande 

que 2. 

 

La quantité iih  est appelé « puissance » (leverage) et permet d’identifier les observations avec 

une valeur extrême sur une variable explicative. Ces observations sont appelées points avec une 

puissance élevée (high leverage)1. 

 

 
1 La puissance est une mesure de la distance avec laquelle une variable indépendante dévie de son point moyen. 

Ces points de puissance peuvent avoir un effet sur l'estimation des coefficients de régression. 

1 

Sensibilité 

Spécificité 
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Au-delà des outliers, il existe parfois dans la base de données des observations qui ont des 

influences significatives sur les coefficients de la régression, c'est-à-dire qui peuvent changer 

aussi bien le signe que les coefficients lorsque celles-ci sont retirées. La détection de ces 

observations peut être faite en utilisant la distance de Cook et les Dbeta. 

La distance de Cook est donnée par l’expression : 

 

2

2

)1( ii

iii

i
h

hr
C

−
=                                                          (2.39) 

Au regard de ce critère, une observation sera suspecte si 
n

Ci

4
 . 

 

Le tableau synthétique ci-après fournit pour chaque indicateur le seuil tolérable : 

 
Indicateurs Seuils 

abs( ir ) 2 

abs(
std

ir ) 2 

iih  2*k/n 

C 4/n 

 

Dans la pratique, ces indicateurs doivent être combinés afin de produire des résultats 

intéressants au risque d’exclure toutes les observations de la base de données. En fonction du 

nuage des résidus, il est possible de modifier un temps soit peu les seuils prédéfinis pour les 

mêmes raisons que précédemment.  

 

8. Tests de significativité des coefficients 

 

Pour tester la significativité des coefficients, trois statistiques de test sont généralement 

utilisées: le test de Wald, le test du rapport de vraisemblance (LR test) et le test du multiplicateur 

de Lagrange (LM test). Ces trois statistiques de test sont utilisées pour tester plus généralement 

des restrictions sur les coefficients des modèles. Elles sont asymptotiquement équivalentes, 

mais elles ont des comportements différents en petits échantillons. Nous allons développer les 

deux premières statistiques de test. 

 

8.1 Test de Wald 

 

Dans le cas où l’on veut tester la significativité d’un seul coefficient, la statistique de Wald est 

définie à partir de la statistique : 

 

)1,0(
ˆ

ˆ
N

a
z

k

k →=


                                                    (2.40) 

 

On a donc que : 

 

)1(22 →= zW                                              (2.41) 

 

Si *w  désigne la valeur critique au seuil α d'un Khi-deux à 1 degré de liberté, alors la stratégie 

de test est la suivante: 
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- Si *

wW   : on accepte l'hypothèse que le coefficient ka  n'est pas significativement 

différent de zéro. En d'autres termes, la variable correspondante kx  n'est pas 

significative dans l'explication du phénomène étudié. 

 

- Si *

wW   : on accepte que la variable kx  est significative pour le modèle spécifié. 

 

8.2 Test du rapport de vraisemblance 

 

Pour  tester la significativité du coefficient ja  à l’aide du test du rapport de vraisemblance, on 

compare le modèle saturé au modèle estimé en enlevant la variable jx  de la liste des variables 

explicatives. La statistique de ce test est: 

 

( ) )1(2 2

0  →−−= llj                                           (2.42) 

 

où ol est la log-vraisemblance du modèle estimé sans la variable explicative jx , c’est-à-dire 

sous l’hypothèse 0:0 =jaH , et l  est la log-vraisemblance du modèle sous l’hypothèse 

alternative. 

 

Le test du rapport de vraisemblance est plus performant que le test de Wald. Dans certains cas, 

le dernier peut accepter l’hypothèse nulle alors que le coefficient en question est bien 

significatif.  

 

On peut également utiliser un test du rapport de vraisemblance pour tester la significativité de 

plusieurs coefficients du modèle. Le principe du test reste toujours le même : on estime le 

modèle sous les deux hypothèses et on calcule la statistique du rapport de vraisemblance. 

 

 

9. Interprétation des coefficients et calcul des effets marginaux 

 

Nous avons vu que dans les modèles Probit et Logit, les paramètres du modèle ne sont identifiés 

qu’à une constante multiplicative près. Ils ne peuvent être identifiés sans imposer des 

restrictions sur la moyenne et la variance du terme d’erreur. Toutefois, les conditions 

d’identification n’affectent pas la probabilité de l’événement. Il ne faut pas également perde de 

vue que les coefficients estimés reflètent la relation entre les variables explicatives et la variable 

latente. Par conséquent, l’ordre de grandeur des coefficients n’a, en lui-même que peu 

d’importance. Les seules informations vraiment directement interprétables sont les signes et les 

valeurs relatives des coefficients. Le signe d’un coefficient indiquera si la variable explicative 

associée influence la probabilité de l'événement à la hausse ou à la baisse. Un coefficient ja  

positif signifie qu’un accroissement de jx  joue dans le sens d’une plus grande probabilité 

d’observer l’évènement 1=y . 

 

9.1 Calcul des effets marginaux 

 

En pratique, on se sert des effets marginaux pour étudier l’effet d’une variable explicative sur 

la probabilité de l’événement étudié. L’effet marginal d’une variable jx est la dérivée de la 

probabilité estimée par rapport à cette variable :  
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Pour un Logit : 

 

( ) jax
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j
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e
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axF
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Pour un Probit : 

 

 j

ax

j

j ae
x

ax
xEm ˆ

2

1)ˆ'(
)(

2)'(
2

1

=

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=

−


                                (2.45) 

 

Dans le modèle linéaire l’effet marginal des variables explicatives sur la probabilité de 

réalisation de l’événement 1=y est constant. Au contraire, ici cet effet marginal varie en 

fonction du point à partir duquel il est apprécié. Néanmoins, le signe de l’effet marginal est 

celui du coefficient.  

 

Cependant on peut évaluer un effet marginal synthétique dans l’échantillon, qui renseignerait 

sur l’impact moyen d’une variation unitaire de la variable explicative. Deux solutions sont alors 

envisageables. On peut calculer l’effet marginal moyen en remplaçant les valeurs individuelles

ix  par leurs moyennes empiriques calculées sur toutes les observations. Ce qui donne : 

 

j

j

j aaxf
x

axF
xEm ˆ)ˆ'(

)ˆ'(
)( =




=                                      (2.46) 

 

On peut également considérer la moyenne des effets marginaux individuels. 

 





=

i j

j
x

axF

n
xEm

)ˆ'(1
)(                                                 (2.47) 

 

Pour une variable qualitative binaire s, l'effet marginal s'obtient en faisant la différence des 

probabilités: 

)0,/1()1,/1()( ** ==−=== sxyPsxyPsEm                          (2.48) 

 

On parle dans ce cas d’effet discret. 

 

On peut également calculer une élasticité qui présente l’avantage par rapport à l’effet marginal 

d’être indépendante de l’unité de mesure de la variable explicative: 

 

)ˆ'(

)ˆ'(
ˆ

)ˆ'(
.

)ˆ'(

axF

axf
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axF

x

x

axF
jj

j
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


=                                          (2.48) 

 

Cette expression prend une forme simplifiée dans le cas du modèle Logit: 
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axjjj
e

xa
ˆ'1

1
ˆ

+
=                                                        (2.49) 

 

9.2 Comparaison des estimations des modèles Logit et Probit 

 

Les restrictions sur les moyennes et les variances des erreurs permettent certes d'identifier les 

modèles; en revanche, ces restrictions d'identification rendent les valeurs numériques des 

paramètres arbitraires. En effet, la différence de variance (1 pour le Probit et 3/2  pour le 

Logit) implique une différence dans les valeurs numériques des coefficients estimés Logit et 

Probit. Les coefficients Logit et Probit ne peuvent être comparés directement qu’à la condition 

de prendre la précaution de pré-multiplier les coefficients Probit par 3/ (ou de diviser les 

coefficients Logit par 3/ ). Autrement dit, si on prend en compte la différence de variance, 

on a l'approximation : 

obitobitit aaa PrPrlog
ˆ8,1ˆ

3
ˆ =


                                               (2.50) 

 

Les résultats des modèles Probit et Logit sont généralement similaires si l’on tient compte des 

problèmes de normalisation. Toutefois, il convient d’être prudent dans l’utilisation des 

approximations pour comparer ces deux modèles. Il est toujours préférable de raisonner en 

termes de probabilité et non en termes d’estimation des coefficients pour comparer ces résultats 

(Amemiya, 1981). 

 

9.3 Odds-Ratio 

 

Les coefficients du modèle Logit ont une interprétation intéressante qui justifie son utilisation 

intensive en épidémiologie.  On a en effet : 
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Les coefficients ja sont les effets marginaux des variables explicatives sur le logarithme du 

rapport des côtes
11 1/ pp − . L’équation (2.51) est appelée transformation Logit et est notée 

)/1((log xyPit = . Si on pose iii ppc −= 1/ , on interprète ce rapport en disant qu’il y a ic  fois 

plus de chance que l’événement 1=iy  se réalise qu’il ne se réalise pas. 

 

On définit le Odds Ratio (OR) associé à une variable jx  par : 
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où 
1p  représente la probabilité que 1=y  pour un individu pour lequel 1=jx  et 0p celle pour 

un individu pour lequel 0=jx .  
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Un Odds Ratio de 1 signifie que la probabilité de 1=y est la même chez les individus 1=jx

que chez ceux 0=jx . Autrement dit, la réalisation de 1=y n’est pas associée à jx . En revanche, 

un Odds Ratio différent de 1 signifie qu’il y a une association entre l’événement 1=y et la 

variable jx . Si Odds Ratio est >1, cela signifie que le numérateur est plus grand que le 

dénominateur et, par conséquent, que les individus 1=jx  ont une plus grande occurrence de 

l’événement 1=y  que ceux 0=jx . C’est le contraire s’il est <1. 

 

En utilisant l’expression (2.52) dans le cadre d’un modèle Logit, on a : 
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L’exponentiel du coefficient d’une variable explicative dichotomique s’interprète comme son 

Odds Ratio (l’Odds Ratio (OR) associé au passage de la catégorie de référence 0=jx à la 

catégorie 1=jx ). 

 

Lorsque la variable explicative est continue, on calcule un Odds Ratio associé à un 

accroissement unitaire : 

 

j

k

l

ll

jj

k

jl

ll

j

a

xaa

xaxaa

x e

e

e
OR =





=

=



+

+++

1

0

0 )1(

                                                  (2.54) 

 

On notera que l’Odds Ratio dépend de l’unité de mesure de la variable. 

 

Exemple : On observe un échantillon de 170 candidats à un concours d’entrée dans une grande 

école. On s’intéresse à l’association entre l’option et l’admission. 

 
 

Option 

Echec  

Total Oui (1) Non (0) 

Eco 17 73 90 

Maths 46 115 161 

Total 103 148 251 

 

Risque d’échec chez les Eco=17/90=0,63.  

Risque d’échec chez les Math=46/161=0,28. 

 

Risque relatif RR=0,63/0,28=2,21 : le risque d’échec est 2,21 fois plus élevé chez les Eco que 

chez les Math.  

 

Odds chez les Eco=0,63/(1-0,63)=1,73 : les Eco ont 1,74 fois plus de risque d’échouer que de 

réussir. 
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Odds chez les Math=0,28/(1-0,28)=0,4 : les Math ont 2,5 fois plus de chances de réussir que 

d’échouer au concours. 

 

Odds-ratio OR=0,63/(1-0,63)/ 0,28/(1-0,28)= 1,73 /0,4=4,31. 

 

10. Critères de comparaison de plusieurs modèles 

 

Il n’existe pas de critère absolu permettant de comparer plusieurs modèles alternatifs estimés à 

partir d’un même échantillon. Selon le critère retenu, un modèle peut sembler plus performant 

qu’un autre et moins performant pour un autre critère. Néanmoins, il existe un certain nombre 

de critères statistiques permettant de juger de la performance des modèles, le critère le plus 

discriminant dépend de l’objectif assigné au modèle. Nous présentons ci-après les deux groupes 

de critères les plus utilisés. 

 

10.1 Taux de bonnes prédictions  

 

On peut comparer les performances de deux modèles en comparant leur pouvoir prédictif, c’est-

à-dire leur capacité à classer correctement les observations. Pour cela, il faut définir une 

stratégie de prédiction ou d’affectation sous la forme : 

 

On décide que 1=iy  quand ppi ˆ  et 0=iy  sinon.   

 

A partir de cette stratégie, on construit la table de vérité croisant les prédictions et les 

observations réelles de la variable y. De cette façon, on calcule le pourcentage d’observations 

bien prédites, qui fournit un critère de performance du modèle. Toutefois, ce critère est trop 

optimiste pour trancher de façon pertinente entre deux modèles concurrents. 

 

10.2 Critères d’information 

 

Plusieurs critères statistiques sont couramment utilisés dans les logiciels d'économétrie. Ces 

critères fournissent une mesure de la quantité d’information donnée par le modèle. Il s’agit 

notamment du : 

 

- Critère d’Akaike :  

 

nknLAIC /2/)log(2 +−=                                             (2.55) 

 

- Critère de Schwarz :  

 

nnknLSC /)log(/)log(2 +−=                                           (2.56) 

 

- Critère d’Hannan-Quinn:  

 

nnLogknLLogHQ /))(log(2/)(2 +−=                                (2.57) 

 

- Critère d’Information Bayésien :  

 

)ln(*))log(2)log(2( 0 nddlLLBIC −−=                                (2.58) 
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- Critère d’Information Bayésien Modifié :  

 

)ln(*))log(2)log(2( 0

' nkLLBIC −−=                                  (2.59) 

 

Le ’’meilleur modèle’’ est celui qui fournit un critère minimal.  

 

11. Test d'hétéroscédasticité résiduelle 

Le test d'hétéroscédatsicité est très important dans les modèles de choix dichotomique. En effet, 

l'hétéroscédasticité biaise l'estimation de la matrice de variance-covariance, ainsi que les tests 

statitiques, car en présénce d'hétéroscédatsicité les estimateurs ne sont pas asymptotiquement 

efficaces. 

Pour tester l'hypothèse d' hétéroscédatsicité résiduelle, on considère la formulation générale due 

à Harvey (1976): 

 iz

i e
'22 =                                                             (2.60) 

 où iz'  est un vecteur de variables de dimension )1( g . Cette spécification est compatible avec 

le modèle Probit seulement. L'hypothèse nulle d'homoscédatsicité est 0:0 =H . Le vecteur iz'  

ne contient pas de terme contant. Pour tester cette hypothèse, on peut utiliser le test du rapport 

de vraisemblance ou celui du multiplicateur de Lagrange. 

 

11.1 Test du rapport de vraisemblance 

 

La log-vraisemblance du modèle hétéroscédastique est : 
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Les conditions de premier ordre s'écrivent: 
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On évalue les log-vraisemblances du modèle libre et du modèle contraint. La statistique du 

rapport de vraisemblance est définie par : 

( ) )(lnln2 2

0 gLLLR →−−=                                           (2.64) 
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11.2 Test du multiplicateur de Lagrange 

 

Le test du multiplicateur de Lagrange est basé sur les conditions de premier ordre du programme 

de maximisation de la fonction de vraisemblance sous l’hypothèse alternative. On vérifie si ces 

conditions sont violées lorsqu’on se situe sous l’hypothèse nulle. Autrement dit, dans 

l’hypothèse nulle 0:0 =H , on doit vérifier la condition suivante : 
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Cette condition implique l’orthogonalité de )( '' axz ii − avec le résidu normalisé du modèle. 

Pratiquement, ce test s'effectue simplement à partir de la régression du modèle artificiel suivant: 
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La variable expliquée de l’équation de test est un résidu normalisé. â et )ˆ'(ˆ axp ii = sont 

estimées sous l’hypothèse nulle. La statistique de test est égale à la somme des carrés des ir̂ :  
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11.3 Calcul des effets marginaux en présence d'hétéroscédasticité 

 

En présence d'hétéroscédasticité, l'effet marginal d'une variable kw  pouvant être dans x ou z 

est : 
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Si kw  apparaît seulement dans x alors l'effet marginal se réduit à: 
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Si kw apparaît seulement dans z alors l'effet marginal se réduit à:  
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12. Variables explicatives polytomiques 

 

Dans les applications, il est souvent fréquent que des variables qualitatives figurent parmi les 

variables explicatives dans les modèles de regression. Etant donné que les codes associés à ces 

variables sont arbitraires, le codage ne servant qu'à reperer les catégories et n'a pas de sens 

numérique, il est conseillé d'introduire une variable indicatrice ou binaire par modalité. Par 

exemple, pour une variable comme la catégorie socio-professionnelle (CSP) ayant 3 modalités 

codées 1, 2 et 3, on définit 3 variables indicatrices de la façon suivante: CSP1=1 si CSP=1, 0 

sinon; CSP2=1 si CSP=2, 0 sinon; CSP3=1 si CSP=3, 0 sinon. 

Cependant, on ne gardera pas ces trois variables dans le modèle, car elles ne sont pas 

linéairement indépendantes. En effet, chaque individu a une et une seule CSP, donc 

CSP1+CSP2+CSP3=1. Il y a un problème de multicolinéarité si le modèle contient une 

constante. 

Il est suggéré de supprimer une des 3 variables indicatrices. La modalité répresentant la 

situation la plus courante sert de modalité de référence et on supprime la variable 

correspondante. Cela revient à dire que son coefficient est nul. Dans le choix de la variable à 

inclure on peut comparer les modèles obtenus avec les différents codages et retenir celui qui a 

la plus grande vraisemblance. Dans tous les cas, l’interprétation des coefficients se fait par 

rapport à la modalité de référence. Dans un modèle de regression sur variables binaires, 

l'ensemble des situations de référence est representé par la constante. 

 

On peut utiliser un test du rapport de vraisemblance pour tester l’effet d’une variable 

polytomique sur la probabilité de réalisation de l’événement. Soi M le nombre de modalités de 

la variable. Si cette variable est remplacée dans le modèle par M - 1 variables binaires, alors 

tester l’effet de la variable polytomique revient à tester la nullité simultanée des M - 1 

coefficients associés aux différentes modalités. La statistique de test du rapport de 

vraisemblance suit un Khi-deux à M - 1 degrés de liberté. 

 

Lorsque la variable explicative est polytomique à modalités ordonnées, le choix de la modalité 

de référence est moins difficile. Dans ce cas, en effet, on a très souvent intérêt à prendre comme 

référence la modalité la plus basse. On peut alors commenter les coefficients comme s’il 

s’agissait de variables continues.  
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Chapitre 3 

 

Modèles multinomiaux  

 

1. Introduction 

 

Les modèles multinomiaux sont des modèles où la variable dépendante est une variable 

qualitative à plusieurs modalités. Il existe trois grandes catégories de modèles multinomiaux 

qui se distinguent de la façon de modéliser le processus aléatoire ayant engendré les réalisations 

de la variable dépendante et/ou par le choix du codage de la variable. 

 

- Les modèles ordonnés 

- Les modèles non ordonnés 

- Les modèles séquentiels  

 

Dans la pratique, les modèles polytomiques non ordonnés sont les plus fréquents. Dans cette 

catégorie, on trouve notamment le modèle Logit multinomial et le modèle Logit conditionnel 

de McFadden, qui sont les modèles les plus utilisés et qui constituent une extension du Logit 

binaire. 

 

Si ces modèles sont simples, ils posent toutefois un problème de cohérence en raison d’une 

propriété peu réaliste d’Indépendance des Alternatives non Pertinentes. C’est pourquoi des 

modèles alternatifs ont été développés comme le modèle Logit hiérarchisé ou le Probit 

multinomial. Ces derniers requièrent toutefois des techniques d’estimation relativement 

complexes. 

 

 

2. Modèles polytomiques ordonnés 

 

Dans les modèles polytomiques ordonnés, la variable dépendante est une variable qualitative 

ordonnée, c’est-à-dire dont les modalités peuvent être hiérarchisées comme dans les exemples 

suivants : 
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2.1 Modélisation d’une variable polytomique ordonnée 

 

On considère une variable dépendante ordonnée y prenant J modalités. Pour modéliser cette 

variable, on peut adopter une approche en termes de variable latente en posant que : 
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*                                    (3.1) 

 

où les 
1x  …  kx sont les variables susceptibles d’expliquer

*y . Comme dans le cas binomial, la 

modalité de Y dépendrait directement de la position de
*y par rapport à différents seuils: 
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On peut écrire de façon plus compacte : 

 

jy i =  si jij cyc −

*

1  avec −=0c et +=Jc                            (3.3) 

 

Si on désigne par F la fonction de répartition du terme d’erreur, on a :  

 

      )'()'Pr()1Pr( 11  iiii xcFcexy −=+== p                                                                   (3.4) 

 

   )'()'()'Pr()Pr( 11  ijijjiiji xcFxcFcexcjy −−−=+== −− , 12 − Jj       (3.5) 

 

       )'(1)'(Pr)(Pr 1  iJjiii xcFcexobJyob −−=+== −f                                                (3.6) 

 

Selon que F est la fonction de répartition de la loi normale ou logistique, on a un modèle Probit 

ordonné ou un Logit ordonné. 

 

2.2 Fonction de vraisemblance et estimation 

 

La fonction de vraisemblance du modèle s’écrit : 
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où la variable ijy  est définit par 1=ijy si jy i = . 

 

Les coefficients du modèle sont estimés par la méthode du maximum de vraisemblance : 

 

),...,,,(logˆ
1 JccyLMaxArg 


=                                             (3.8) 

 

),...,,,(logˆ
1 J

c
j ccyLMaxArgc

j

=                                             (3.9) 

 

 

On rencontre ici les mêmes difficultés que celles qui ont déjà été évoquées dans le cas binaire.  
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• Il est impossible de dissocier l’estimation de la constante 0  de celle des seuils 
1c , …

1−Jc  . 

• Dans le cas du modèle Probit ordonné, il est impossible de dissocier l’estimation des 

différents coefficients de celle de la variance de l’erreur (qu’on pose par convention 

égale à l’unité) : les coefficients estimés ne nous renseignent donc sur les valeurs 

théoriques de ceux-ci qu’à un facteur multiplicatif près. Seuls comptent les signes et les 

valeurs relatives de ces coefficients. 

 

Toutefois, si les seuils jc  sont connus (discrétisation d’une variable continue par exemple), les 

paramètres   et  sont identifiés dès lors que 2J  car la variabilité dans la variable de seuil 

permet d’identifier /1  (dans un modèle dichotomique 2=J , il n’y a pas de variabilité des 

seuils). 

 

2.3 Test de régression parallèle 

 

Avant de discuter de l’interprétation d’un modèle ordonné, il est indispensable de comprendre 

et tester une hypothèse implicite de ce modèle connu sous les noms d’hypothèse de régression 

parallèle, pour le modèle Logit ordonné, et d’hypothèse de proportion des odds. Les équations 

(3.4) à (3.6) peuvent être utilisées pour la dérivation des probabilités cumulées qui s’écrivent 

sous la forme simplifiée par : 

 

)'()(Pr iji xcFjyob −= , 11 − Jj                            (3.10) 

 

Ces dernières équations montrent que le modèle de régression ordonné est équivalent à J-1 

régressions binaires sous l’hypothèse fondamentale que les coefficients estimés par rapport aux 

variables explicatives sont identiques dans chacune des équations. Par exemple, avec J=4 et 

une seule variable explicative x, nous avons en contraignant l’ordonnée à l’origine à 0 : 

 

)()1(Pr 1 ii xcFyob −=                                                    (3.11)                             

)()2(Pr 2 ii xcFyob −=                                                   (3.12) 

)()3(Pr 3 ii xcFyob −=                                                    (3.13) 

 

Si nous représentons l’argument de F sur un graphique de dimension deux, nous avons que la 

pente   est identique (droite parallèle) au niveau de chacune des équations. 

 

Cette hypothèse de constance des coefficients   est implicite mais doit être testée pour assurer 

la validité du modèle de régression ordinale. Le test est effectué en comparant les coefficients 

issus des J-1 équations binaires obtenues ci-dessus. Ces équations seront réécrites en modifiant 

  de sorte à ce qu’ils varient d’une équation à une autre comme suit : 

 

)'()(Pr jiji xcFjyob −= , 11 − Jj                            (3.14) 

 

L’hypothèse de régression parallèle implique l’égalité 121 −=== J K . L’hypothèse sera 

vérifiée à condition que les 121
ˆˆˆ

−=== J   soient très proches. Le test commun utilisé pour 
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s’assurer que cette hypothèse est vérifiée est celui développé par Brant (1990). Toutefois, il 

existe un autre test basé sur le rapport de vraisemblance développé par Wolfe et Gould (1998). 

 

Une violation de cette hypothèse entraîne la non-validité du modèle ordonnée sous la forme 

présentée ci-dessus. Il faut recourir soit aux modèles ordonnés généralisées soit aux modèles 

multinomiaux non ordonnés. 

 

2.4 Interprétation des coefficients 

 

Les coefficients ne sont pas directement interprétables. On doit calculer l'influence marginale 

des variables sur les probabilités en dérivant les probabilités conditionnelles. Les effets 

marginaux par rapport à une variable explicative kx  quelconque sont donnés par les formules 

suivantes: 
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A partir des effets marginaux individuels, on peut calculer des effets marginaux globaux sur 

l’échantillon, qui renseignent sur l’impact moyen des variables explicatives sur la probabilité 

des différents événements. Deux méthodes peuvent être utilisées. La première évalue l’effet 

moyen en prenant la moyenne simple des effets marginaux individuels : 
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La deuxième méthode calcule l’effet marginal global au point moyen : 
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L’effet marginal de la variable kx sur la probabilité d’avoir Jy = est de même signe que le 

coefficient k tandis qu’il est de signe opposé sur la probabilité d’avoir 1=y . Pour les modalités 

intermédiaires ( 1...2 −= Jj ), le signe de l’effet marginal n’est pas forcément celui du 

coefficient, la quantité entre crochets étant de signe indéterminé. On interprétera donc un 

coefficient k positif en disant que tout accroissement de kx contribue à rendre plus probable la 

modalité la plus élevée de y . Un coefficient négatif signifie a contrario que tout accroissement 

de kx  contribue à tirer y  vers ses modalités les plus faibles. 

 

L’interprétation des coefficients d’un modèle ordonné est donc délicate, surtout pour les 

modalités intermédiaires. On doit pour ce type de modèle toujours calculer les effets marginaux 

et ne pas se contenter de présenter les coefficients estimés. 
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2.5 Pouvoir prédictif du modèle 

 

On peut appliquer aux modèles ordonnés les mêmes calculs d'indicateurs de performance que 

ceux mis en œuvre pour les modèles binomiaux. Le 2R  de McFadden se calcule de la même 

manière. Quant à la table des bonnes prédictions, on peut considérer que la valeur de iy  prédite 

par le modèle est celle qui correspond à la probabilité la plus forte. 

 

 

3. Modèles multinomiaux non ordonnés 

 

3.1 Logit multinomial 

 

3.1.1 Modélisation 

 

Ce modèle généralise le modèle Logit binaire.  On modélise plusieurs choix non ordonnés. Par 

exemple, le choix du mode de transport : le bus, transport public, voiture, autre (vélo, marche à 

pieds, etc.). L’ordre dans lequel sont rangées les différentes occurrences de Y est sans 

importance et ne doit pas affecter le calcul des probabilités de ces occurrences.  

 

Soit y  la variable dépendante prenant les modalités J,...,2,1 . La probabilité d’occurrence d’une 

modalité j s’écrit : 
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Les coefficients  dépendent de la catégorie à laquelle appartient l’individu. Pour chaque 

variable explicative, on estime autant de coefficients que de modalités de y , chacun mesurant 

l’effet de la variable sur l’appartenance à l’une des J modalités de y . On est cependant confronté 

à un problème d’identification : en remplaçant j par  +j , la probabilité ne change pas. Une 

infinité de valeurs de j sont donc possibles, qui conduisent à une même valeur de la 

probabilité. Pour résoudre ce problème, on doit imposer aux coefficients une condition 

d’identification. Celle qui est souvent retenue est d’imposer la nullité de tous les paramètres 

relatifs à une catégorie donnée, appelée modalité de référence. Le choix de cette catégorie de 

référence est arbitraire. Par exemple, si on décide que la modalité de référence correspond à j = 

1 alors la condition d’identification 01 = implique que : 

 

0... 11101 ==== k                                                   (3.21)  

 

Avec cette condition identifiante, l’équation de probabilité devient : 
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La probabilité que 1=y  ne sera pas modélisée car elle est connue à partir des autres probabilités. 

En conséquence, les coefficients ne peuvent être estimés que pour les J-1 modalités, sans la 

modalité de référence. La conséquence importante de cette contrainte d’identification est que 

le modèle mesure l’effet d’une variable explicative non sur la probabilité d’appartenir à une 

catégorie donnée, mais sur la probabilité d’appartenir à la catégorie plutôt qu’à la catégorie de 

référence, ou, plus précisément, sur le rapport entre la probabilité d’appartenir à la catégorie et 

la probabilité d’appartenir à la catégorie de référence. En effet, il est facile de montrer que : 

 

  kikjijjjiii xxxyobjy '...'')(')1(Pr/)Pr(ln 1101  +++=−===             (3.23) 

 

Ainsi l’interprétation des coefficients d’un modèle Logit multinomial se fait en termes d’écart 

au référentiel. Par exemple si 0k , tout accroissement de kx contribue à rendre plus probable 

le choix de la modalité j par rapport à celui de la modalité de référence. 

 

Les coefficients kj sont obtenus par maximisation de la log-vraisemblance de l’échantillon 

d’estimation : 
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où la variable ij  est définit par 1=ij si jy i = . 

 

 

3.1.2  Interprétation des coefficients d’un Logit multinomial 

 

L’interprétation des coefficients d’un modèle multinomial est délicate. En effet, si on calcule 

l’effet marginal d’une variation de kx sur la probabilité que l’individu choisisse j  (plutôt que 1), 

on obtient: 
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où kj̂ est la kième composante de j̂ associée à la variable explicative kx . 

 

Pour chaque variable kx , on doit calculer J effets marginaux associés aux probabilités 

)Pr( jyp iij == , Jj ,...,1= . 

 

On constate que l’effet marginal n’est pas de même signe que celui du coefficient. Il dépend 

des valeurs de tous les coefficients et non seulement de kj̂ . De plus, on note que la valeur de 
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l’effet marginal dépend du point à partir duquel on le mesure. Pour cette raison, on le calcule le 

plus souvent au point moyen.  

 

Le problème d’interprétation des coefficients se complique lorsque la variable explicative est 

une variable qualitative polytomique, puisqu’il faut imposer, à la variable, une modalité de 

référence à laquelle toutes les autres modalités de la variable doivent être comparées. Dans ce 

cas, la lecture des résultats doit « gérer » deux références : la catégorie de référence de la 

variable dépendante et la modalité de référence de la variable explicative. 

 

On peut calculer le rapport des probabilités comme suit: 
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Ce rapport est indépendant des autres modalités : le rapport des probabilités associées au choix 

entre deux modalités ne dépend pas des autres modalités. Ajouter ou supprimer une tierce 

modalité, ou bien modifier les caractéristiques d’une modalité déjà incluse, ne change pas le 

rapport entre ces probabilités. C’est ce qu’on qualifie de propriété d’indépendance des 

alternatives non pertinentes (IIA : Independance of Irrelevant Alternatives).  

 

Remarque : Le modèle Logit multinomial est formellement équivalent à une analyse 

discriminante linéaire si toutes les variables explicatives sont continues et distribuées selon une 

loi normale multidimensionnelle de telle manière que les J lois conditionnelles à l’appartenance 

de l’individu à l’une des J classes ont la même variance (Amemiya, 1981 ; Maddala, 1983 ; 

Sautory et Vong, 1992; Bardos, 2001). On peut donc utiliser ce modèle pour répondre aux deux 

objectifs de l’analyse discriminante : trouver la fonction linéaire des variables individuelles qui 

sépare au mieux les classes (les catégories) ; affecter à une classe un nouvel individu dont on 

connaît seulement les caractéristiques. 

 

3.1.3 Tests d’hypothèses sur les coefficients 

 

Les principaux tests d’hypothèse examinés ici portent sur la nullité d’un ou plusieurs paramètres 

du modèle. A cet effet, on peut utiliser la statistique de Student ou celle du rapport de 

vraisemblance. 

 

A) Significativité d’un coefficient 

 

On veut tester la nullité du paramètre  associé à une variable jx caractéristique de choix dans 

un Logit conditionnel, ou du paramètre j  d’une variable individuelle, associé à la catégorie j, 

dans un Logit multinomial. Pour ce faire, on utilise la statistique de Student définit par le rapport 

de la valeur estimée du paramètre à son écart-type estimé.  

 

B) Significativité de plusieurs coefficients 

 

Si on veut tester la nullité simultanée de plusieurs paramètres, on utilise le test du rapport de 

vraisemblance. Ce test consiste à comparer la vraisemblance 0L d’un modèle contraint à celle 

1L d’un modèle non contraint. La statistique de test )ln(ln2 10 LLLR −−=  suit 

asymptotiquement une loi du Khi-deux dont le nombre de degrés de liberté est égal à la 
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différence entre le nombre de paramètres du modèle non contraint et le nombre de paramètres 

du modèle contraint. 

 

Le test du rapport de vraisemblance peut être utilisé après l’estimation d’un modèle Logit 

multinomial pour tester l’effet d’une variable explicative kx sur l’appartenance à une 

quelconque des J catégories, c’est-à-dire si au moins un des paramètres J ,...,, 22 de la 

variable est non nul. Cela revient à tester la nullité des J-1 coefficients: 0...22 ==== J . 

 

Le principe du teste consiste à calculer la vraisemblance du modèle complet (
1L ) et celle du 

modèle contraint ( 0L ) obtenu en supprimant la variable explicative kx . La statistique du test 

)ln(ln2 10 LLLR −−=  suit asymptotiquement une loi du Khi-deux à 1−J degrés de liberté. Le 

rejet du modèle contraint signifie qu’un des paramètres au moins n’est pas nul : la variable kx

a bien un effet. 

 

C) Test de l’hypothèse IIA 

 

Certains auteurs ont montré que dans certaines occasions, l’hypothèse d’indépendance des 

alternatives non pertinentes est trop restrictive pour modéliser correctement les comportements 

des individus (voir l’exemple du « bus bleu/bus rouge » de McFadden (1973) repris dans 

Horowitz et Savin, 2001 ; et celui du métro dans Thomas, 2000). 

 

La propriété d’IIA peut être testée. L’hypothèse nulle est celle d’IIA. L’idée du test proposé par 

Hausman est de comparer deux estimateurs des coefficients sous les hypothèses nulle et 

alternative. Les étapes de ce test sont les suivantes : 

 

C.1 Test de Hausman 

 

- On estime le modèle complet avec toutes les J alternatives : 

 





















=

J





ˆ

.

.

ˆ

ˆ

1

                                                        (3.27) 

 

- On estime le modèle contraint en élevant la ou les alternatives concernées et en excluant 

les individus qui ont choisi ces modalités: 
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- On compare les valeurs des coefficients obtenues dans ces deux estimations. Si la 

propriété IIA est valide, elles doivent être proches. L’écart entre les deux ensembles de 

paramètres s’estime en calculant la statistique de test : 
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où k  est la dimension du vecteur de paramètres. 

 

C.2 Test de Small-Hsiao 

 

Comme Hausman, Small et Hsiao ont développé un test qui permet également de vérifier 

l’hypohèse IIA. Ce test procède comme suit : 

 

- Diviser l’échantillon en deux (S1 et S2) de tailles à peu près égales. 

- Estimer dans chacun des échantillons le modèle complet. On obtient 1ˆ S et 2ˆ S  à partir 

desquels on calcule 2121 ˆ)
2

1
1(ˆ

2

1ˆ SSSS  −+=  . 

- Estimer le modèle contraint dans l’échantillon 2 et obtenir 2ˆ S

c . 

- Calculer la statistique  )ˆ()ˆ(2 221 S

c

SS

c LLSH  −−=  qui suit une loi de Khi-deux 

admettant comme paramètres le nombre de paramètres dans le modèle contraint. 

 

Remarque : Dans la pratique, les tests d’Hausman et Small-Hsiao peuvent donner des résultats 

contradictoires. Cheng et Long (2005) ont montré que : 

- La puissance du test d’Hausman est faible même si la taille de l’échantillon atteint 1 000. 

- Pour certains types de données, le test Small-Hsiao a une bonne puissance pour les 

échantillons de taille supérieure ou égale à 500. Pour d’autres échantillons, ce test a une 

faible puissance indépendamment de la taille de l’échantillon. 

 

3.2 Modèle Logit multinomial conditionnel 

 

3.2.1 Modélisation 

 

Le Logit multinominal admet que les valeurs prises par les variables explicatives ne sont pas 

influencées par la nature du choix et que les probabilités attachées aux différentes modalités ne 

diffèrent les unes des autres que par le fait qu’à chaque modalité est attaché un jeu spécifique 

de coefficients. Il existe cependant une autre possibilité : considérer un vecteur de coefficients 

constants quel que soit l’individu et la modalité et autoriser les variables explicatives à dépendre 

des modalités. Cette possibilité est à la base du modèle Logit conditionnel de McFadden (1973). 

 

En reprenant la démarche utilisée pour le logit multinomial et en remplaçant formellement 

jix '  par ijx'  , le modèle conditionnel s’écrit : 
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avec 1

*' '' iijij xxx −= . 
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Parce que toutes les variables explicatives dépendent de chaque choix j, le problème 

d’identification rencontré avec le Logit multinomial ne se pose pas : il n’y a pas à imposer des 

contraintes sur  . Les coefficients  s’interprètent comme associés aux différences des 

variables de chaque modalité par rapport aux variables du cas de référence (modalité 1). 

 

Prenons l’exemple du choix des modes de transport. On considère les modes suivants : bus 

(modalité 2), la voiture (modalité 3) et les autres modes de transport (modalité 1). Les variables 

explicatives sont exprimées en différences par rapport à leurs valeurs prises dans la modalité 0. 

Il s’agit par exemple du temps de transport moyen du domicile au lieu de travail pour le mode

j , noté ijij xt 1= et le coût au kilomètre de ce mode, noté ijij xc 2=  . Si on suppose que ce sont 

les deux seules variables explicative, on a ( )',, 210  = . La probabilité qu’un individu i

caractérisé par des temps relatifs )( 3,2 ii tt et des coûts relatifs )( 3,2 ii cc  choisisse le mode de 

transport 3,2=j  s’écrit : 
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avec ( )ijijij ctx ,,1*' = . 

 

La log-vraisemblance associée à un modèle Logit conditionnel s’écrit : 
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On détermine le vecteur de coefficients   en maximisant cette fonction. 

 

 

3.2.2 Interprétation des coefficients d’un Logit conditionnel 

 

 

Effets marginaux 

 

Les effets marginaux mesurent les variations de la probabilité de choisir la modalité j quand la 

variable explicative kx  « augmente » d’une unité. On peut calculer deux types d’effets 

marginaux.  

 

Effet direct :  
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Effet croisé :  
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Les effets marginaux dépendent donc des valeurs des variables explicatives. 

  

L’effet marginal direct (dérivée par rapport à jx de )Pr( jy = ) est toujours du signe de  , tandis 

que l’effet marginal croisé est toujours du signe opposé à celui de  . Cette propriété est une 

conséquence directe de la forme fonctionnelle des probabilités. On vérifie de plus que : 
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La variation d’une des probabilités à l’augmentation d’une caractéristique est compensée par 

les variations concomitantes des autres probabilités. 

 

On peut calculer de la même manière les élasticités directes et croisées. 

 

Elasticité directe :  
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Elasticité croisée :  
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Les élasticités directes mesurent l’effet, sur la probabilité de choisir j, d’une augmentation de 

la caractéristique x de j. Les élasticités croisées mesurent les effets sur les probabilités des autres 

choix, d’une augmentation de la caractéristique x de j, elles décrivent les substitutions possibles 

entre j et h du fait de l’augmentation de jx  . On remarquera que les élasticités croisées ne 

dépendent pas de h. Elles sont les mêmes pour tous les choix autres que j. 

 

Probabilité d’un événement virtuel 

 

Le modèle Logit conditionnel permet d’estimer la probabilité associée à une modalité virtuelle 

de la façon suivante : 
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où ̂ désigne un estimateur convergent de  obtenu sur la base des modalités existantes ; 
'

1

'

1

*'

1 iiJiJ xxx −= ++  représente les caractéristiques exogènes de l’individu associées à la J+1ième 

modalité virtuelle. 
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Considérons l’exemple précédent sur les modes de transport et supposons maintenant qu’on 

cherche à évaluer la probabilité que la population adopte un nouveau mode de transport public 

(le métro par exemple), en plus de ceux déjà existants. Soient 4ît et 4
ˆ

ic les évaluations du temps 

de trajet et du coût au kilomètre du nouveau mode de transport. La probabilité qu’un individu 

i  utilise le nouveau mode de transport (modalité 4) lorsque celui-ci sera effectivement mis en 

en service est: 
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On obtient une estimation de la probabilité que l’individu i choisisse le nouveau mode de 

transport plutôt que les autres modes de transport. 

 

La propriété IIA 

 

Le logit conditionnel partage avec le logit multinomial la propriété IIA que le rapport de deux 

probabilités de choix j et h  est indépendant des autres modalités (de leur nombre, leurs 

configurations, etc) : 
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On peut donc interpréter un coefficient comme une semi-élasticité : un coefficient positif 

signifie que tout accroissement du différentiel dans les variables explicatives contribue à 

accroître la probabilité de choisir la modalité j  par rapport à la modalité h . 

 

Cette propriété peut être testée en suivant la même procédure que dans le modèle Logit 

multinomial. 
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Chapitre 4 

 

Modèles Tobit  

 

 

1. Introduction 

 

Les modèles de régression classiques supposent à travers l’hypothèse de normalité sur la 

distribution des termes d’erreur que la variable dépendante est une variable aléatoire continue. 

Par conséquent, elle ne peut prendre une ou plusieurs valeurs données avec une probabilité non 

nulle. Cependant, pour certains phénomènes économiques, cette hypothèse semble irréaliste 

dans la mesure où la variable dépendante est continue mais peut prendre des valeurs isolées 

avec des probabilités finies. Il s’agit en effet des modèles à variables dépendantes limitées. Dans 

ces modèles, la variable dépendante n’est observable que sur un certain intervalle. Par exemple, 

sur un échantillon aléatoire de ménages, on cherche à expliquer les dépenses d'un bien (par 

exemple le logement) en tenant compte du fait que, pour une partie de l’échantillon la dépense 

est nulle. Pour cet échantillon la valeur nulle est observée avec une probabilité différente de 0. 

 

 
De tels échantillons sont appelés des échantillons censurés car la variable dépendante n’est 

observable que pour certains ménages (ménages locataires notamment). L’échantillon est dit 

tronqué lorsque pour une partie de l’échantillon les observations relatives à la variable 

dépendante et aux caractéristiques individuelles ne sont pas disponibles. Dans ce cas, 

l’échantillon tronqué n’est plus aléatoire et l’estimation utilisant cet échantillon pourrait donner 

des résultats biaisés. Le modèle censuré le plus simple est le modèle Tobit (Tobin’s Probit) 

considéré comme une extension du modèle Probit permettant de traiter un certain nombre de 

situations. 

 

2. Spécification du modèle Tobit simple 

 

Reprenons l'exemple des dépenses d'un bien. Soit id la dépense du ménage i consacrée à ce 

bien. Pour un certain nombre de ménages on n'observe pas la dépense, par contre, pour d'autres 

on a 0id . Soit ix le vecteur des caractéristiques du ménage i. id est fonction de ix  à travers 

un modèle linéaire : 

 

 iii uaxd += '                                                        (4.1) 
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La variable iy  observée est définie de la façon suivante: 

 

ii dy = si 0id , 0=iy  sinon                                                 (4.2) 

 

Autrement dit, on reporte une dépense nulle pour les ménages n'ayant pas révélé un montant de 

dépense. On obtient de cette façon un modèle dit censuré à gauche. Le nuage de points sera 

mal décrit par la relation linéaire précédente puisqu'il contient deux parties nettement 

différentes (voir graphique ci-dessus). 

 

Comment expliquer les variations des dépenses entre les différents ménages de l'échantillon 

alors que cette variable n'est positive que pour certains ménages? Les autres ménages ont une 

valeur nulle pour cette variable mais leurs caractéristiques sont néanmoins observées.  

 

D’une façon générale, le modèle Tobit simple est spécifié sous la forme : 
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On suppose que la borne de censure 0=c , ce qui implique que si le vecteur ix  contient un terme 

constant, celui-ci se confond au seuil. 

 

3. Vraisemblance du modèle Tobit et méthodes d’estimation  

 

Pour estimer le modèle Tobit, la méthode utilisée est celle du maximum de vraisemblance. Pour 

écrire la fonction de vraisemblance du modèle, il faut remarquer que la distribution de la 

variable dépendante iy est un mélange d’une variable discrète et d’une variable continue 

(normale). Si on désigne par   et   respectivement la densité et la fonction de répartition de 

la loi normale standard, on a : 
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Lorsque 0iy , sa densité s’écrit : 
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La fonction de log-vraisemblance du modèle censuré s’écrit donc : 
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L'estimation par la méthode du maximum de vraisemblance consiste à maximiser la fonction l. 

On sait que cette technique fournit des estimateurs convergents et asymptotiquement efficaces.  

On note que, contrairement au modèle Probit, on peut identifier ici séparément les paramètres 

a et . 

 

3.1 Pourquoi les MCO ne sont pas appropriés ? 

 

Que se passe-t-il si on ignore le problème de censure ou de troncature et qu’on estime par MCO 

le modèle iii uaxy +=  sur l’échantillon des individus tels que 0iy ? 

 

Estimer ce modèle par MCO revient en fait à supposer que axyxyE iiii = )0,/( . Si cette 

condition n’est pas vérifiée, l’estimateur des MCO sera biaisé. En effet, on a : 
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(On utilise le résultat : Si )1,0(Nz   alors
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Dans un modèle Tobit censuré, on a :  
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Il y a donc oubli de variable explicative lorsqu’on estime le modèle par MCO ; la variable omise 

est définie par : 
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Cette variable est appelée « ratio inverse de Mills ».  
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On peut montrer que l’estimateur des MCO est biaisé en écrivant simplement les conditions de 

premier ordre du maximum de vraisemblance. 
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Cette condition s’écrit matriciellement : 
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On en déduit que : 
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L’estimateur du MV est en général supérieur en valeur absolue à celui des MCO. 

 

Ainsi, un modèle Tobit censuré estimé par MCO fournit des estimateurs biaisés non 

convergents du fait de l’oubli d’une certaine variable explicative, appelée le  ratio inverse  de 

Mills. 

 

Que se passe-t-il  si on estime par MCO le modèle iii uaxy +=  sur l’échantillon tout entier? 

Cela suppose que axxyE iii =)/( . Or, ici encore on a :  
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Les estimateurs obtenus seront biaisés et non-convergents. 

 

3.2 Procédure d’estimation en deux étapes d’Heckman  

 

Le développement précédent  ne signifie pas qu’on ne peut pas utiliser les MCO pour estimer 

un modèle Tobit censuré. En effet, il suffit d’ajouter au modèle "ce qui manque" et d’estimer le 

modèle par MCO pour avoir des estimateurs convergents. Le modèle augmenté à estimer s’écrit 

sous la forme : 

 

iiii uaxy ++=                                                         (4.15) 

 

Tout le problème revient à trouver un moyen de construire la variable   qui, manifestement, 

dépend des paramètres inconnus a  et  . 

 

Heckman (1976) propose une procédure d’estimation utilisant successivement les parties 

qualitative et quantitative du modèle. Les étapes de cette procédure sont décrites comme suit: 

 

1- Estimer la probabilité de censure à l’aide d’un Probit: 

 

/(Pr)0Pr()1Pr( axobityz iii === )                                    (4.16) 
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Cela fournit un estimateur convergent '̂ de 



a

=' . 

2- Utiliser cet estimateur pour construire un estimateur convergent du ratio inverse de Mills : 
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3- Estimer par MCO le modèle linéaire augmenté iiii uaxy ++= ̂  sur le sous-échantillon des 

observations pour lesquelles 0iy . 

 

Par construction, les résidus iu  de cette régression sont hétéroscédastiques. En effet, sur ce sous-

échantillon, la variance des iu  n'est pas égale à 2 , elle vaut : 

 

 ( ) '22 1)'/var()0/var( iiiiiiii xaxuuyu +−=−=                       (4.18) 

 

On utilise le résultat de la théorie des probabilités selon lequel : si ),0( Nz →  alors 
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On peut donc appliquer les MCO pondérés pour corriger l’hétéroscédasticité des erreurs : après 

avoir estimé ' , on estime ensuite , on calcule la variance des erreurs et on pondère les 

observations par )(ˆ
iuV . 

 

 

4. Calcul des effets marginaux  

 

Les effets marginaux dans un modèle de régression correspondent à des prévisions sur une 

variable continue lorsqu’une variable explicative donnée est modifiée. Dans un modèle Tobit, 

il y a trois effets marginaux possibles selon la distribution de la variable considérée. En effet, 

on a : 
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En effet, on montre que ( )ii

i
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+= )()/(  (voir Greene (1997) page 910). 
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En effet: iiiii axyxyE += )0,/( . 
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5. Test d’hétéroscédasticité  

 

La présence d'hétéroscédasticité implique la non-convergence de l'estimateur du maximum de 

vraisemblance (Gourieroux, 1989, p.210). Il faut donc prendre en compte l'hétéroscédasticité 

quand elle est présente, lors de l'estimation. Une façon de tester l’hétéroscedasticité est de 

spécifier une relation scédastique sous la forme : 

 

 )exp( '2

0

2
 ii z=                                                       (4.22) 

 

où iz est un vecteur de g variables responsables de l’hétéroscedasticité. En pratique, on prend 

souvent certaines variables explicatives. L’hypothèse nulle d’homoscédasticité est équivalente 

à : 

 

H0 : 0=                                                                 (4.23) 

 

Cette hypothèse peut être testée à l’aide de la statistique du ratio de vraisemblance: 

 

 )()(2 20 gllLR −−=                                                      (4.24) 

 

où 0l  est la log-vraisemblance sous l’hypothèse d’homoscédasticité et l  la log-vraisemblance 

sous l’hypothèse d’hétéroscédasticité. 

 

On peut également utiliser le test du multiplicateur de Lagrange. Si l'on évalue la matrice G(a, 

b) de dimension (n, k+g) contenant les dérivées de la fonction de log-vraisemblance pour 

chaque observation, le terme général de cette matrice est donné par : 

 

 
j

ii
ij

yxl
G







=

),,(
 , j=1…k+g                                                 (4.25) 

avec ),( ba= un vecteur de k+g éléments.    

La statistique de test est définie par : 

  nn eaGaGaGaGeLM )'ˆ()ˆ()'ˆ()ˆ('
1−

=                                       (4.26) 

où )'1,...,1,1(=ne . 

On utilise un résultat beaucoup plus simple: 

)(22 gnRLM →=                                                        (4.27) 

où 2R  est le coefficient de determination de la régression du vecteur )'1,...,1,1(=ne  sur la 

matrice G, évaluée sous l'hypothèse d'homoscédasticité. 

Sous l'hypothèse d'une hétéroscédasticité multiplicative de la forme )exp( '2

0

2
 ii z= , le 

gradient de la fonction log-vraisemblance donne les équations ci-après:  
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6. Modèle Tobit généralisé (Tobit avec sélection) 

 

Dans le modèle Tobit simple (Tobit I), les deux parties du modèle (qualitative et quantitative) 

sont modélisées simultanément. Dans l'exemple de l'achat du bien, l'individu décide 

simultanément du fait qu'il va ou non consommer le bien et de la dépense qu'il va affecter à 

l'achat du bien. En fait, ce modèle ne modélise pas explicitement la partie qualitative, c'est-à-

dire la décision d'acheter ou non le bien. Autrement dit, le modèle Tobit simple suppose que les 

déterminants de la décision d'acheter le bien et la somme dépensée sont les mêmes. Un modèle 

alternatif, plus approprié à l'étude de nombreux phénomènes (offre de travail, dépenses de 

transferts…), consiste à supposer un comportement séquentiel séparant les deux parties du 

modèle. Dans un premier temps, l'individu décide s'il va consommer ou non le bien. Cette 

première décision peut être modélisée par un modèle binaire basé sur une variable latente 
*

is : si 

0*is  alors l'individu achète le bien, sinon il ne l'achète pas. 

 

Dans une seconde étape, il fixe la somme 
*

iy  qu'il va consacrer à l'achat du bien. La variable 

observée iy  est alors définie par : 
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Cette spécification généralise le modèle Tobit simple qui correspond au cas particulier où
**

ii sy = . 

 

De façon générale, le modèle Tobit généralisé (Tobit de type II) est un modèle dans lequel le 

phénomène de censure est basé sur la valeur d’une variable s différente de la variable 

dépendante. La structure du modèle Tobit II est la suivante: 
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La deuxième équation iii vzs += '*
 définit l’équation de sélection. 

 

On suppose que : 
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où   représente le coefficient de corrélation entre iu  et iv . La formulation Tobit II permet donc 

de faire apparaître la plus ou moins grande corrélation existant entre les deux décisions. La 

restriction que la variance de iv est égale à 1 est imposée parce que seul le signe de 
*

is  sera 

observé. De fait, les variables réellement observées sont iy  et is . x et z sont des vecteurs de 

variables explicatives de dimensions 1k  et 2k  respectivement. Certaines variables explicatives 

peuvent être communes à x et z, mais a priori rien n'impose que ces variables soient les mêmes. 

En effet, une variable peut très bien expliquer les dépenses de consommation d’un bien sans 

pour autant être déterminante dans la décision d'achat du bien. 

 

On montre que: 
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On peut appliquer la procédure d’estimation en deux étapes d’Heckman. Dans une première 

étape, on modélise par un Probit ordinaire la partie qualitative du modèle: 
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L'estimation Probit de ce modèle permet d'obtenir un estimateur convergent ̂  des paramètres 

de l’équation de sélection )(Pr)1Pr( ii zobits == .  

Dans une seconde étape, le regresseur de sélection
)(

)(






i

i
i

z

z


=  est évalué en ̂  et le modèle 

augmenté iiii axy  ++= ˆ'  est estimé par MCO à l’aide des observations pour lesquelles 

1=is . 

 

On obtient des estimateurs asymptotiquement sans biais de a et  . Mais ces estimateurs ne 

sont pas asymptotiquement efficaces, car les résidus de la régression sont hétéroscédastiques 

par construction. En effet, on a:  

 

 222 .')()( iiii zV  +−=                                        (4.36) 
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Ainsi, pour obtenir une inférence paramétrique correcte, il est nécessaire de corriger cette 

hétéroscédasticité par la méthode des moindres carrés pondérés. Pour obtenir une estimation de

 , on considère les résidus de la dernière régression:  

 

iiii axy  ˆˆˆ'ˆ −−=                                                         (4.37) 

 

Puisque : 

 

 222 .')()( iiii zV  ++=                                        (4.38) 

 

On obtient un estimateur convergent de 2  donné par : 
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où 1n représente l'effectif des observations pour lesquelles 1=is . 

 

Cette méthode d'estimation en deux étapes fournit aussi bien un test pour la sélection 

d’échantillon qu’une technique d’estimation. Le coefficient du regresseur de sélection est égal 

à  . Puisque 0 alors on peut utiliser un test de Wald pour tester l’hypothèse que 0= . 

Sous cette hypothèse, la statistique de test suit asymptotiquement une loi du Khi-deux à un 

degré de liberté. Si l’hypothèse n’est pas rejetée, on peut conclure que la sélection n’introduit 

pas de biais dans l’estimation par la méthode des MCO. 

 

7. Modèle à régime 

 

On suppose ici que l’échantillon peut être scindé en deux sous-echantillons suivant un critère 

donné. Par exemple, marié/non mariés, utilise ou n’utilise pas une méthode contraceptive, etc. 

On considère la variable de régime 1=iR si l’individu i satisfait le critère (régime 1), 0 sinon 

(régime 2). La variable latente associée à iR est notée
*

iR .  

 

On cherche à modéliser une variable dépendante y sachant que celle-ci est expliquée de façon 

différente selon le régime : 
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Les caractéristiques explicatives
1x et 

2x  ne sont pas nécessairement les mêmes, elles peuvent 

être communes ou bien différentes selon le régime. Par exemple, si on considère le régime 

relatif à l’utilisation d’une méthode contraceptive, on peut prendre en compte les variables telles 

que la source d’information sur cette méthode, la fréquence d’utilisation, pour les individus 

utilisant la méthode (régime 1).  
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On pose que ii uu 21 ,  et iv  suivent une loi normale trivariée avec : 

 

-  
2

1

2

1 )( =iuE                                                                                                                       (4.41) 

 

- 
2

2

2

2 )( =iuE                          (4.42) 

 

- 1)( 22 == vivE                         (4.43) 

 

- 1221 )( =iiuuE                        (4.44) 

 

- vii vucorr 11 ),( =                         (4.45) 

 

- vii vucorr 22 ),( =                       (4.46) 

 

Sous ces hypothèses, on établit que : 

 

 
)(

)(
)1/( 11111






i

i
viii

z

z
axRyE


+==                                         (4.47) 

 

( ) i

i

i
vii

z

z
axy 222222

(1

)(
. 




 +

−
−=                                          (4.48) 

 

On peut utiliser une procédure d’estimation en deux étapes à la Heckman : 

 

- On estime à l’aide d’un Probit l’équation de régime )(Pr)1Pr( ii zobitR == . On obtient un 

estimateur convergent de , à partir duquel on estime les regresseurs de sélection 
)(

)(





i

i

z

z


 

et 
( ))(1

)(





i

i

z

z

−
. 

- On estime séparément, par MCO, les modèles i

i

i
vii

z

z
axy 111111

)ˆ(

)ˆ(





 +


+=  et 

( ) i

i

i

vii
z

z
axy 222222

)ˆ(1

)ˆ(
. 




 +

−
−= , sous les hypothèses habituelles du modèle linéaire 

multiple. 
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Chapitre 5 

 

Modèles de Comptage  
 

 

 

1. Introduction  

 

Le but de ce chapitre est de trouver le ou les modèles appropriés pour analyser une variable de 

comptage. Une variable Y est dite de comptage si elle désigne le nombre de fois qu’un 

événement survient. 

 

Ces variables sont la résultante de certains phénomènes prenant des petits nombres de valeurs 

discrètes positives, mais non catégorielles, comme par exemple le nombre d’accidents, le 

nombre d’enfants, le nombre d’années d’étude, le nombre d’arrivée journalière à une gare, le 

nombre de fois où un individu change d’emploi. 

 

Pour expliquer comment les réalisations de telles variables dépendent d’autres variables 

quantitatives ou qualitatives, le modèle linéaire classique se révèle inadéquat pour les mêmes 

raisons que dans le modèle dichotomique :  

 

1) le nuage des observations n’a pas une forme adaptée à un ajustement linéaire ; 

2) l’hypothèse de normalité ne peut être plausible puisque la variable endogène prend des 

valeurs discrètes avec des probabilités non nulles ; 

3) les prévisions de la variable dépendante donnent des valeurs que ne peut prendre y. 

 

La formulation la plus courante consiste à supposer que les réalisations de la variable sont issues 

d’une loi de Poisson, dont le paramètre dépend des valeurs prises par des variables exogènes.  

 

2. Distribution de Poisson 

 

Soit y une variable aléatoire indiquant le nombre de fois un événement s’est produit durant un 

intervalle de temps. On dit que y  a une distribution de Poisson de paramètre 0 si : 

!
)(Pr

k
ekyob

k
−==                                                 (5.1) 

 

Le paramètre   est appelé taux d’incidence et on a : 

 

)()( yVaryE ==                                                      (5.2) 

 

L’égalité de la moyenne et la variance est qualité d’équidispersion. En pratique, les variables 

de comptage ont souvent une variance plus grande que la moyenne, ce qui est qualifié de 

surdispersion. Le développement des modèles de comptage essaie de prendre en compte cette 

surdispersion.  
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Une autre hypothèse du modèle de Poisson est que les événements sont indépendants. Cela 

signifie que quand un événement se produit, il n’affecte pas la probabilité de réalisation de 

l’événement dans le futur. Par exemple, considérons le nombre de visites chez un médecin. 

L’hypothèse d’indépendance implique que quand un individu visite un médecin, son taux de 

visite ne change pas. Les visites passées n’affectent pas les visites futures. De même, si on 

considère le nombre d’enfants nés durant une période, l’hypothèse d’indépendance implique 

que le fait d’avoir des enfants n’affecte pas le taux de naissance.  

 

L’une des explications de l’échec de la distribution de Poisson à ajuster correctement les 

données empiriques est que le paramètre   diffère selon les individus. On qualifie cette 

situation d’hétérogénéité entre les individus. L’hétérogénéité dans les caractéristiques des 

individus est la cause de la surdispersion dans la distribution marginale de la variable. 

 

3. Le modèle de régression de Poisson 

 

3.1 Présentation du modèle 

 

Soit iy  une variable de comptage à valeur dans N. la probabilité que kyi = , avec  ,...1,0k , 

est donnée par: 

 

!
)Pr(

k
eky

k

i
i

i
−

==                                                        (5.3) 

 

où i est le paramètre de distribution tel que iii yVyE == )()( . Pour introduire des variables 

explicatives ),...,(' 1 kiii xxx = , on pose la relation suivante : 

 

( ) 












== 

=

k

j

jijii xx
1

exp'exp   ou  ii x')log( =                             (5.4) 

 

Le choix de la forme fonctionnelle liant le paramètre aux exogènes s’explique essentiellement 

par la nécessité d’avoir des i positifs. En effet, une spécification  ii x'= conduirait à une des 

i négatif. De plus, lorsque les variables explicatives sont prises en log, les coefficients 

s’interprètent comme des élasticités : 

 

ik

i
j

x

yE

log

)(log




=                                                       (5.5) 

 

La probabilité conditionnelle de iy s’écrit : 

 

 )!log())(log()(exp
!

)(
)Pr(

)(

iiiiii

i

y

iix

i yxyx
y

x
eyy

i

ii −+−===
− 


                (5.6) 

 

La log-vraisemblance du modèle de Poisson est : 
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( )
=

−+−=
n

i

iiii yxyxL
1

)!log(')'exp(log                                     (5.7) 

 

Le vecteur de paramètres   s’obtient par maximisation de cette fonction : 

 

LArgMax logˆ


 =                                                    (5.8) 

 

3.2 Interprétation 

 

Les outils d’interprétation d’un modèle de comptage diffèrent selon que l’on désire connaître 

la valeur espérée ou la distribution de la variable. 

  

3.3 Effet marginal sur la moyenne conditionnelle 

 

La valeur espérée de y conditionnellement aux variables explicatives est : 

 

( ) 












== 

=

k

j

jjxxyE
1

exp'exp)(                                          (5.9) 

 

L’effet marginal d’une variable explicative jx sur la valeur espérée de y est : 

 

)/()'exp(
)/(

xyEx
x

xyE
jj

j

 ==



                                  (5.10) 

L’effet marginal dépend de jx mais aussi de toutes les autres variables.  

 

On peut calculer l’effet sur la moyenne en termes relatifs ou de pourcentage. Pour une variation 

absolue de xj  de ( jx passe de 
*

jx à +*

jx ), on a : 

)exp(
),/(

),/(
*

*




j

jj

jj

xxxyE

xxxyE
=

=

+=
                            (5.11) 

 

Si toutes les variables autres que jx sont maintenues constantes, alors toute variation d’une unité 

de xj ( 1= ) entraîne une variation de la valeur espérée de )exp( j .  

 

Alternativement, on peut exprimer cette variation en pourcentage : 

 

 1)exp(100100
),/(

),/(),/(
*

**

−=
=

=−+=



j

jj

jjjj

xxxyE

xxxyExxxyE
                 (5.12) 

 

Enfin, on peut calculer le changement suite à un changement discret dans la variable xj, par 

exemple xj passe d’une valeur 
Ex à une valeur Sx  : 

 



51 

 

),/(),/(
)/(

SjEj

j

j xxxyExxxyE
x

xyE
=−==




=                        (5.13) 

Ainsi, pour un changement de xj de 
Ex à Sx , la valeur espérée change de j , toutes choses étant 

égales par ailleurs. Les cas les plus courants où un changement discret a lieu sont obtenus en 

faisant varier xj de : 
 

- sa valeur minimum à sa valeur maximum ; 

- 0 à 1 (pour une variable binaire). 

 

3.4 Probabilités prédites 

 

Connaissant ix' on peut calculer la probabilité que iy prenne n’importe quelle valeur de son 

ensemble de définition : 

 

!

))ˆ'exp(exp()ˆ'exp(
)/Pr(

k

xx
xky i

k

i
ii

 −
==                               (5.14) 

 

Cette probabilité est calculée pour chaque observation et pour chaque valeur de k. La probabilité 

prédite moyenne permet, pour chaque valeur de k, de résumer le pourvoir prédictif du modèle. 

Elle est donnée par : 

 

( )ii

n

i

xky
n

ky /Pr
1

)Pr(
1

_________________

=== 
=

                                  (5.15) 

 

 

3.5 Prise en compte du temps d’exposition 

 

Dans ce qui précède, nous n’avons pris en compte le temps d’exposition des individus à 

l’événement d’intérêt. Rappelons que les iy sont indépendantes et que )'/( iii xyE= dans une 

unité d’intervalle de temps. 

 

Désignons par it  la durée de temps d’exposition de l’individu à l’événement. Au bout du temps 

it , le nombre d’événements espéré est :  

( ) ( )
~

'exp')ln(exp iiiiii zxtt =+==                                (5.16) 

 

On peut donc intégrer le temps it dans la régression à l’aide de la variable )ln( it dont le 

coefficient est forcé égal à 1. 

 

4. Modèle binomial négatif 

 

4.1 Spécification  

 

Le modèle de Poisson impose que l’espérance conditionnelle est égale à la variance 

conditionnelle. Cette hypothèse est parfois peu réaliste. Le problème souvent rencontré est celui 
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de la surdispersion: )/()/( iiii xyExyV  . Ce problème provient de l’hétérogénéité non 

observable.  

 

Dans le modèle de Poisson, la moyenne conditionnelle de y sachant x est connue : 

)'exp(  x= . Dans le modèle binomial négatif (Modèle NegBin : Negative Binomial Model), 

la moyenne conditionnelle est une variable aléatoire : 

 

)'exp(
~

iii ex +=                                                        (5.17) 

 

où ie est un terme d’erreur aléatoire supposé non-corrélé avec ix . Dans le modèle de Poisson, 

les variations de i  résultent de l’hétérogénéité observée entre les individus. A différentes 

valeurs de ix  sont associées différentes valeurs de   et tous les individus ayant les mêmes 

caractéristiques observables x ont la même valeur de . Dans le modèle binomial négatif, les 

variations de i
~

 sont dues à la fois aux variations de ix  et à l’hétérogénéité non observable captée 

par la variable ie . Pour des valeurs données de ix , il existe une distribution de valeurs de i
~

 plutôt 

qu’une seule valeur. 

 

La relation entre les moyennes conditionnelles du modèle de Poisson et du modèle binomial 

négatif est donnée par la relation suivante: 

 

iiiiiii eex  === )exp()exp()'exp(
~

                             (5.18) 

 

Pour permettre que le modèle ait la même moyenne conditionnelle que le modèle de Poisson, 

on pose que : 

 

1)( =iE                                                                  (5.19) 

 

La distribution conditionnelle des observations est toujours une loi de Poisson : 
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Cependant, étant donné que le paramètre i est inconnu, on ne peut pas calculer cette distribution 

de probabilité. On impose une distribution de probabilité pour le paramètre i . L’hypothèse la 

plus souvent faite est de supposer que i  suit une distribution Gamma de paramètre i  : 

)exp(
)(

)(
1

iii

i

i
i

i

i

g 



 



−


=
− , 0i                                       (5.21) 

 

On montre que 1)( =iE   et iiVar  /1)( = . 

 

Sous ces hypothèses, la variance conditionnelle de iy est définie par : 
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



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


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i

i
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


 1)/(                                                   (5.22) 

 

Si l’expression de la moyenne conditionnelle permet d’identifier le paramètre λi, il se pose un 

problème d’identification pour la valeur de νi. Si ce paramètre varie suivant l’individu, alors il 

y aura plus de paramètres que d’observations. L’hypothèse souvent faite est de supposer que le 

paramètre i est constant : 




1
=i                                                                  (5.23) 

 

Cette hypothèse implique que la variance de δi est constante. Le coefficient α est appelé 

paramètre de dispersion car la variance conditionnelle de y croit avec α. 

 

4.2 Estimation 

 

Le modèle binomial négatif peut être estimé par la méthode du maximum de vraisemblance. La 

fonction de vraisemblance du modèle est la suivante : 

 

iy

i

i
n

i i

n

i

i
ii

y

y
xyyxyL 









+








+

+
===

−
=

−

−

=
−

−

 

−
















1
1

1

1

1
1

1
1

!)(

)(
)/Pr(),/(             (5.24) 

 

où )'exp(  ii x= . 

 

4.3 Test de l’hypothèse de surdispersion 

 

Il est important de tester l’hypothèse de surdispersion lorsqu’on utilise le modèle de Poisson 

afin de vérifier si l’hypothèse sous-jacente au modèle est vérifiée. La spécification de Poisson 

peut être facilement testée à travers l’hypothèse 0:0 =H . Sous l’hypothèse nulle, le modèle 

binomial négatif se réduit au modèle de Poisson.  On peut utiliser un z-test unilatéral pour tester 

la significativité de α.  On peut aussi utiliser la statistique du rapport de vraisemblance définie 

par : 

 

( ) )1(loglog2 2→−= MPMBN LLLR                                      (5.25) 

 

où LMBN est la vraisemblance du modèle binomial négatif et LMP la vraisemblance du modèle 

de Poisson. 
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